Пусть х-скорость первого пешехода,тогда х-1 - скорость второго пешехода. ТАк как путь и того и другого равен 5 км/ч,тогда скорость первого пешехода 5/x, а второго 5/x-1. Ещ нам известно,что второму понадобилось на 15 минут больше чем первому. ПОэтому составим уравнение:
5/x-1 - 5/x=15
x(x-1)
домножим каждую дробь на недостающий множитель,получим:
5х-5х+5-15х^2-15х=-15х^2-15х+5---это числитель
х^2-хзнаменатель,он должен быть не равен 0(так как знаменатель отличен от нуля)значит х не равен 0 и не равен 1
а числитель равен о
-15х^2 -15х +5=0 разделим обе части на - 5
3х^2+3х-1=0
находим дискриминант 9+12=21
Дробь (х-7)/х.
Если числитель этой дроби уменьшить на 1 , а знаменатель увеличить на 4, то получим дробь ((х-7)-1)/(х+4)=(х-8)/(х+4).
По условию дробь уменьшится на 1/6.
Уравнение (х-7)/х - (1/6)=(х-8)/(х+4).
Умножаем на 6х(х+4)≠0.
6(х+4)(х-7)-х(х+4)=6х(х-8);
х²-26х+168=0
D=(-26)²-4·168=676-672=4.
x=(26-2)/2=12 или х=(26+2)/2=14
х-7=12-7=5 или х-7=14-7=7
дробь 5/12 7/14
(5-1)/(12+4)=4/16=1/4- (7-1)/(14+4)=6/18=1/3
новая дробь
(5/12)-(1/6)=(5/12)-(2/12)=3/12=1/4 (7/14)-(1/6)=(21/42)- (7/42)=14/42= =1/3
О т в е т. 5/12 или 7/14.