решаем слева: a(b^2+2ab+c^2)+b(c^2+2ac+a^2)+C(a^2+2ab+b^2)-4abc=ab^2+2ab+ac^2+bc^2+2abc+a^2b+a^2c+2abc+b^2c-4abc=ab^2+ac^2+bc^2+a^2b+a^2c+b^2c+2abc
теперь правую часть:2abc+ac^2+b^2c++bc^2+a^2b+a^2c+b^2a решая дальше получим 0=0
y = 7x - 6sinx + 8
y' = 7 - 6cosx
7 - 6cosx = 0
6cosx = 7
cosx = 7/6, 7/6 больше 1, поэтому корней нет
Раз критических точек нет, то подставляем только границы промежутка:
y(-π/2) = 7*(-π/2) - 6sin(-π/2) + 8 = -7π/2 + 6 + 8 = -7π/2 + 14 = (28-7π)/2
y(0) = 7*0 + sin0 + 8 = 8
Сравним 8 и (28-7π)/2, чтобы определить наибольшее значение:
8 - (28-7π)/2 = (16 - 28 + 7π)/2 = (7π - 12)/2 ≈ (21 - 12)/2 = 9/2 > 0
8 - (28-7π)/2 > 0
8 > (28-7π)/2
ответ: наибольшее значение функции y = 7x - 6sinx + 8 на отрезке [-π/2; 0] равно 8
a(b+c)² + b(c+a)² + c(a+b)² - 4abc = (a+b)(b+c)(c+a)
a(b²+2bc+c²)+b(c²+2ca+a²)+c(a²+2ab+b²)-4abc=(ab+ac+b²+bc)(c+a)
ab²+2abc+ac²+bc²+2abc+a²b+a²c+2abc+b²c-4abc=abc+a²b+ac²+a²c+b²c+ab²+bc²+abc
(2abc+2abc+2abc-4abc)+ab²+ac²+bc²+a²b+a²c+b²c=(abc+abc)+a²b+ac²+a²c+b²c+ab²+bc²
2abc+ab²+ac²+bc²+a²b+a²c+b²c=2abc+a²b+ac²+a²c+b²c+ab²+bc²
доказано