1) log₃(x+6)+2log₃(x-3)-3log₃(x-1)=0; ОДЗ: х+6>0 x-3>0 x-1>0 ОДЗ: х>3 Применяем свойства логарифмов. Логарифм степени, логарифм произведения, логарифм частного. log₃(x+6)·(x-3)²/(x-1)³=0; По определению логарифма (x+6)(x-3)²/(x-1)³=3⁰; 3⁰=1 (x+6)(x-3)²=(x-1)³; x³-27x+54=x³-3x²+3x-1; 3x²-30x+55=0 D=900-4·3·55=240 х=(30-4√15)/6 <3 не удовл ОДЗ или х=(30+4√15)/6=5+(2√15/3).
2) Даны векторы a(3;-2;2) и b(-5;6;y). Вектор (a+b) имеет координаты (a+b)(-2;4;2+y) Если векторы взаимно перпендикулярны, то скалярное произведение векторов равно 0. Скалярное произведение векторов, заданных своими координатами равно сумме произведений одноименных координат. -2·3+4·(-2)+(2+у)·2=0; -6-8+4+4у=0; 4у=10 у=2,5 3) 20sin²a + 3sina - 2 = 0 - квадратное уравнение. D=9-4·20·(-2)=169 sina=(-3-13)/40=-16/40=-4/10 или sina=(-3+13)/40=10/40=1/4 a ∈ (0; П/2) значит sina>0 sina= (-4/10) не удовлетворяет этому условию. sina=1/4⇒ cosα=√(1-sin²a)=√(1-(1/16))=(√15)/4 sin2a=2sina·cosa=2·(1/4)·(√15)/4=(√15)/8.
Если А и В лежат по одну сторону от прямой, то расстояние от середины отрезка до прямой равно полусумме расстояний от концов отрезка до этой прямой. Если лежат по разные стороны от прямой, то полуразности этих расстояний. (12-4)/2 = 4 см.
На промежутке [-2π/3;0] функция cosx возрастает, а у=-2xcosx - убывает. Числа 19 -18/π -постоянные, они не влияют на поведение функции. Наибольшее значение при х = -2π/3. Оно равно 19-2*cos(-2π/3)-18/π = 19-2*(-1/2) -18/π = 20-18/π. Это в том случае, если косинус х.( без скобок).
ОДЗ:
х+6>0
x-3>0
x-1>0
ОДЗ: х>3
Применяем свойства логарифмов.
Логарифм степени, логарифм произведения, логарифм частного.
log₃(x+6)·(x-3)²/(x-1)³=0;
По определению логарифма
(x+6)(x-3)²/(x-1)³=3⁰;
3⁰=1
(x+6)(x-3)²=(x-1)³;
x³-27x+54=x³-3x²+3x-1;
3x²-30x+55=0
D=900-4·3·55=240
х=(30-4√15)/6 <3 не удовл ОДЗ или х=(30+4√15)/6=5+(2√15/3).
2) Даны векторы a(3;-2;2) и b(-5;6;y). Вектор (a+b) имеет координаты
(a+b)(-2;4;2+y)
Если векторы взаимно перпендикулярны, то скалярное произведение векторов равно 0. Скалярное произведение векторов, заданных своими координатами равно сумме произведений одноименных координат.
-2·3+4·(-2)+(2+у)·2=0;
-6-8+4+4у=0;
4у=10
у=2,5
3) 20sin²a + 3sina - 2 = 0 - квадратное уравнение.
D=9-4·20·(-2)=169
sina=(-3-13)/40=-16/40=-4/10 или sina=(-3+13)/40=10/40=1/4
a ∈ (0; П/2)
значит sina>0
sina= (-4/10) не удовлетворяет этому условию.
sina=1/4⇒ cosα=√(1-sin²a)=√(1-(1/16))=(√15)/4
sin2a=2sina·cosa=2·(1/4)·(√15)/4=(√15)/8.