1) y³ - 2y² = y - 2 y³ - 2y² - y + 2 = 0 Разложим на множители и решим: ( y - 2)(y - 1)(y + 1) = 0 Произведение равно 0,когда один из множителей равен 0,значит, y - 2 = 0 y = 2 y - 1 = 0 y = 1 y + 1 = 0 y = -1 ответ: y = 2, y = 1, y = - 1.
2) (x² - 7)(x² - 7) - 4x² + 28 - 45 = 0 x⁴ - 14x² + 49 - 4x² - 17 = 0 x⁴ - 18x² + 32 = 0 Разложим на множители и решим: (x² - 16)(x² - 2) = 0 Произведение равно 0,когда один из множителей равен 0,значит, x² - 16 = 0 x² = 16 x = 4 x = - 4 x² - 2 = 0 x² = 2 x = +/- √2
y=-4√(3x+5)-4
x0=-0,5
уравнение касательной имеет вид
y=f(x0)+f'(x0)(x-x0)
В нашем случае
x0=-0,5
f(x0)=f(-0,5)=-4√((-0,5)*3+5)-4=-4√3,5 -4
y' = -6/√(3x+5)
y'(-0,5)=-6/√(3*(-0,5)+5)=-6/√3,5
тогда
y=-4√3,5 -4+(-6/√3,5)*(x+0,5)