1.
104° - тупой угол, только один в треугольнике.
180°-104°=76° - сумма двух других углов. они равны, т.к. треугольниу равнобедренный.
76°:2=38° - углы при основании равнобедренного треугольника.
2.
а) Сумма острых углов прямоугольного треугольника равна 90°.
90-30=60° - величина второго угла
Т.к. EF - биссектриса, то
60°:2=30° - ∠DEF
ED - основание ΔDEF, ∠DEF=∠EDF, EF=DF, следовательно, треугольник равнобедренный.
б) СF<DF
3.
х см - длина одной стороны
х+17 см - длина другой стороны.
Р=77 см
Примем большую сторону за основание.
х+х+х+17=77
3х=77-17
3х=60
х=20(см) - длина равных сторон
20+17=37(см) - длина основания
Теперь примем за основание меньшую сторону.
х+2*(х+17)=77
х+2х+34=77
3х=43
х≈14,3(см) - длина основания
14,3+17=31,3(см) - длина каждой из двух других сторон.
D=b²-4ac=2²-4·1·(-5)=4+20=24. √D=√24=2√6
x₁=(-b+√D)/2a=(-2+2√6)/2=2(√6-1)/2=(√6-1)/1=√6-1
x₂=(-b-√D)/2a=(-2-2√6)/2=-2(√6+1)/2=-(√6+1), где x₁=√6-1 и x₂=-(√6+1) корни уравнения. Теперь находим произведение корней уравнения:
x₁·x₂=(√6-1)·(-1)·(√6+1)=(√6²-1²)·(-1)=-(6-1)=-5
2) [(3/(x-3)-(3/x)]·x+3/9=[[3x-3(x-3)]·x]/(x-3)·x +3/9=раскрываем скобки и сокращаем=[3x-3x+9]/(x-3)·x +3/9=9/(x-3)+3/9=первую дробь умножаем на 9, вторую умножаем на (x-3) =(81+3x²-9x)/(x-3)x=(81+3x-9)/(x-3)=
=(72-3x)/(x-3)=3(24-x)/(x-3)
3) 4√0.0016-(1/2)√0.04=4·√(0.04)²-(1/2)·√(0.2)²=4·0.04-0.2÷2=0.16-0.1=0.06