Объяснение:
Квадратное уравнение можно представить в виде:
a(x-x1)(x-x2)=0, где x1 и x2 - корни уравнения;
Раскроем скобки, тогда a*x^2-a*x(x1+x2)+a*x1*x2=0 (1)
у нас выражение x^2-x-p=0 (2)
Если сравнить 2 выражения.
Коэффициент в (2) перед x^2=1, отсюда следует, что в (1) a=1.
(1) принимает вид:
x^2-x*(x1+x2)+x1*x2=0
Сравниваем коэффициенты перед x, получаем
x1+x2=1 (3)
сравниваем свободные члены
-p=x1*x2 (4)
также по условию
x1^2+x2^2=25; (5)
тут 2 варианта, решить систему выше или можно предположить решение;
Предположим, что x1=-4, x2=5;
Тогда удовлетворяются все уравнения условия - (3), (5);
получаем, что p=-(-4)*(5)=20
1) 12•a-3•b=3•(4•a-b)=3•(4•(-3,4)-5,6)=3•(-13,6-5,6)=-3•(13,6+5,6)=-3•19,2=-57,6
2) 1-0,6•x≠1+0,6•x
-0,6•x≠0,6•x
0≠1,2•x
0≠x
Достаточно сравнить x с нулем.
Поскольку x=5>0, то 0<x
Поэтому
1-0,6•x<1+0,6•x
3 а) 12•a-10•b-10•a+6•b=(12-10)•a-(10-6)•b=2•a-4•b=
=2•(a-2•b)=2•(-3,4-2•5,6)=2•(-3,4-11,2)=2•(-14,6)=-29,2
3 б) 4•(3•x-2)+7=4•3•x-4•2+7=12•x-8+7=12•x-1=12•5-1=60-1=59
3 в) 8•x-(2•x+5)+(x-1)=8•x-2•x-5+x-1=7•x-6=7•5-6=35-6=29
4) -5•(0,6•c-1,2)-1,5•c-3=-5•0,6•(c-2)-1,5•c-3=-3•(c-2)-1,5•c-3=
=-3•c-3•(-2)-1,5•c-3=-(3+1,5)•c+6-3=-4,5•c+3=3•(1-1,5•c)=3•[1-1,5•(-4,9)]=
=3•(1+7,35)=3•8,35=25,05
5) 7•x-(5•x-(3•x+y))=7•x-(5•x-3•x-y)=7•x-(2•x-y)=7•x-2•x+y=5•x+y