Объяснение:
f(x) = x² +16/x
необходимое условие экстремума функции
f'(x₀) = 0 - это необходимое условие экстремума функции в т х₀
достаточное условие
если в т х₀
f'(x₀) = 0 и f''(x₀) > 0 , то точка x₀ - точкой локального (глобального) минимума.
если в т x₀
f'(x₀) = 0 и f''(x₀) < 0 , то точка x₀ - локальный (глобальный) максимум.
теперь найдем первую производную
f'(x) = 2x -16/x²
2x -16/x² = 0; здесь одно решение х₁ = 2 - это точка экстремума
посмотрим, какой это экстремум
для этого возьмем вторую производную
f''(x) = 2 + 32/x³
f''(2) = 6 > 0, т.е. точка x₀ = 2 точка минимума функции.
значение функции в т х₀
f(2) = 12
y= x² - 4x +3 . Это парабола ,ветви вверх. Область определения :х-любое, множество значений функции [ -1; +∞) ;
a) найдите точки пересечения графика с осью ОУ
Точки пересечения с оу ( х=0)
у= 0²- 4*0+3= 3, Точка (0; 3).
b) найдите точки пересечения графика с осью ОХ;
Точки пересечения с осью ох( у=0)
x²- 4x+3=0 , Д=4 , х₁=(4+2)/2=3, х₂=(4-2)/2=1 . Точки (3;0) , ( 1;0);
c) запишите координаты вершины параболы
х₀=-в/2а, х₀=-(-4)/2= 2 , у₀=2²-4*2 +3= -1 , ( 2; -1).
Тогда наименьшее значение функции у=-1 ( при х=2)
Наибольшего значения нет ;
d) запишите уравнение оси симметрии параболы
х=2;
Дополнительно
f) Промежутки возрастания убывания функции
Функция убывает при х≤ 2 ,
функция возрастает при x≥2;
Промежутки знакопостоянства функции :
+ . - .+
______(1)_______(3)_______
у>0 при х <1 и x>3
у<0 при 1 <х< 3 ;