Масса одного яблока 120 г, масса олной груши 110 г
Объяснение:
Исправим условие задачи: ; кг яблок и 3 кг груш не может быть равно 810 г Поэтому читаем условие так: 4 яблока и 3 груши имеют массу 810 г.
Пусть х - масса 1-го яблока
у - масса одной груши
4/х - количество яблок
По условию
4х + 3у = 810 (1)
3х - 2у = 140 (2)
Умножаем 1-е уравнение на 3, а 2-е уравнение на -4
12х + 9у = 2430
-12х + 8у = -560
Сложим эти уравнения
17у = 1870
у = 110 (г) - масса 1-й груши
Подставим х = 110 в 1-е уравнение
4х + 3 · 110 = 810
4х + 330 = 810
4х = 480
х = 120 (г) - масса 1-го яблока
Имеет ли решение система уравнений :
1) { 2x -7y =6 ; | *4 { 8x -28y =24 ;
{ 8x -28y =24 . { 8x -28y =24 .
система имеет бесконечно много решений
2) { 2x +y = -2 ; | *3 { 6x + 3y = - 6 ;
{ 6x +3y =9 . { 6x + 3y = 9 .
Система не имеет решений
Система не имеет решений, если коэффициенты при неизвестных пропорциональны, но не пропорциональны свободным членам
2/6 = 1/3 ≠ (-2)/9 .
3. { x+2y =0,5 ; | *2 { 2x +4y = 1 ;
{ 2x +4y =2 . { 2x +4y =2 .
Система не имеет решений
Разложи на множители числитель, рассмотри его как квадратное уравнение и найди х, он будет равен -2
Получается (х+2)·(х+2) скобки дублируются.
Это был числитель.
Теперь знаменатель, вынеси за скобку х².
Тогда х²(х+2)
Сокращаем числитель и знаменатель на одну одинаковую скобку (х+2)
Остаётся в числителе (х+2), а в знаменателе х²
подставляем число = -2, это то, к чему стремится предел твой.
Получается в числителе 0/4=0
Предел равен 0