Поскольку эта задача уже решалась совсем недавно, позволю себе опустить подробности. Дважды возводя в квадрат (второй раз - уединяя корень), получим уравнение
Сначала будем искать так называемые парные корни, то есть корни вида Такие корни ходят парами, дают в разложении скобку (x²-a^2). Для поиска таких корней надо решать систему из двух уравнений, приравнивая отдельно к нулю сумму четных степеней и сумму нечетных степеней. Доказательство этого факта я оставляю читателю. В нашем случае находим корни
Далее ищем кратные корни (они, как известно, ищутся из системы
В результате находится кратный корень 2 кратности 2. После деления остается квадратный трехчлен с конями
Работу по выделению истинных корней оставляю читателю. ответ:
На этом разрешите закончить это немного хулиганское решение.
Если кто-нибудь захочет услышать поподробнее про парные корни, составьте самостоятельно многочлен с парными корнями, приравняйте его к нулю и предложите мне решить такое уравнение. В этом случае я все внимание уделю этой теме.
Задача. Сколько действительных корней имеет уравнение![2x^{4} - 3x^{3} - 12x^{2} + 12x = 0?](/tpl/images/2009/5206/38a4b.png)
Укажите интервал, которому принадлежит наименьший корень:
ответ запишите в виде:
где
— число корней,
— номер промежутка, которому принадлежит наименьший корень.
Решение. Вынесем общий множитель
за скобки:
Произведение множителей равно нулю тогда, когда хотя бы один из них равен нулю:
Видя последнее уравнение, понимаем, что искать все его корни не нужно. Этого и не требуют в задании.
Рассмотрим функцию![f(x) = 2x^{3} - 3x^{2} - 12x + 12.](/tpl/images/2009/5206/c636f.png)
1) Область определения:![D(f) = (-\infty; ~ {+}\infty).](/tpl/images/2009/5206/702c6.png)
2) Исследуем данную функцию на четность:
Функция не обладает свойством четности. Она ни четная, ни нечетная.
3) Определим нули функции.
3.1. Пересечение с осью![x \colon](/tpl/images/2009/5206/93fc7.png)
Невозможно дать точный ответ.
3.2. Пересечение с осью![y \colon](/tpl/images/2009/5206/930e8.png)
Значит,
— точка пересечения с осью ![y.](/tpl/images/2009/5206/66471.png)
4) Найдем производную функции:
5) Определим критические точки функции, приравняв производную к нулю:
Определим точки экстремума и экстремумы функции:
Итак:
6) Изобразим схематически график функции, строго соблюдая все найденные точки, монотонность функции и симметрию линий около критических точек (см. вложение).
Выводы. Как видно из графика, из уравнения
имеем три действительных корня, наименьший из которых находится в интервале
Таким образом, уравнение
имеет четыре действительных корня.
ответ:![4, ~ 2.](/tpl/images/2009/5206/b0334.png)