Решаем иррациональное уравнение √х+4 - √6-х = 2.
Одно из подкоренных выражений заменим переменной t:
при условии, что t больше либо равно 0, √6-х =t, следовательно 6-х =t^2, выражаем х= 6-t^2.
В уравнении х заменяем выражением 6-t^2.
√10-t^2 - t = 2, √10-t^2=2+t, возводим в квадрат обе части уравнения
10-t^2=4+4t+t^2, преобразовываем уравнение:
2t^2+4t-6=0. Мы получили квадратное уравнение, с условием что t больше либо равно 0 и меньше либо равно 2.Вычисляем дискриминант D=b^2-4ac = 16-4*2*6=16-48=-32. Мы получило дискриминант меньше 0. Следовательно уравнение решения не имеет.
y^2+2xy+y^2=(x+y)^2=9
x+y=sqrt(9)=3
Объяснение:
1) =1,2b(b^3-a^3)=1,2b(b-a)(b^2+ab+b^2)
2) =1,8x^4y^2(2y-1)(2y+1)
пусть х(см) - длина параллелепипеда. тогда х-5(см) - ширина параллелепипеда, х+2(см) - высота параллелепипеда. так как объём равен 240 см^3, составим уравнение:
х * (х-5) * (х+2) = 240
1989*1989=1989(1988+1)=1989(2*994+1)=1989*2*994+1989
теперь из полученного выражения вычтем один, причем вычесть его мы можем из любого слагаемого 1989*2*994+1989-1=1989*2*994+1988=1989*2*994+2*994 как мы видим, оба слагаемых кратны 994, следовательно и сумма будет делится 994, аналогично мы можем возвести в любую степень или домножить на любое число