0,5+m
Объяснение:
Для того, чтобы найти требуемое значение логарифма log49(28), которого обозначим через L, воспользуемся следующей формулой loga(b / с) = logab / logaс (где а > 0, a ≠ 1, b > 0, c > 0), которая называется формулой перехода к новому основанию.
В нашем примере новым основанием будет число 7, так как дано log7(2) = m. Итак, имеем L = log7(28) / log7(49). Поскольку 28 = 7 * 22 и 49 = 72, то используя следующие формулы, преобразуем полученное выражение: loga(b * с) = logab + logaс (где а > 0, a ≠ 1, b > 0, c > 0) и logabn = n * logab (где а > 0, a ≠ 1, b > 0, n – любое число). Получим: L = log7(7 * 22) / log7(72) = (log7(7) + log7(22)) / log7(72) = (log7(7) + 2 * log7(2)) / (2 * log7(7)).
Очевидно, что log7(7) = 1. Тогда, имеем: L = (1 + 2 * m) / (2 * 1) = 1 : 2 + 2 * m : 2 = 0,5 + m.
а) рассмотрим прямоугольный треугольник с острыми углами 30 и 60 градусов. В таком треугольнике катет, противолежащий углу 30 градусов и прилежащий углу 60, равен половине гипотенузы, то есть cos60=1/2,т.к косинус- это отношение прилежащего катета к гипотенузе. Пусть этот катет равен х, тогда гипотенуза равна 2х. Катет, противолежащий углу 60 градусов, по теореме Пифагора равен , тогда sin60=√3x/2x=√3/2.
b) Рассмотрим прямоугольный треугольник с острыми углами 45 градусов, это равнобедренный прямоугольный треугольник, его катеты равны, значит, можем найти гипотенузу по теореме Пифагора. Пусть катеты равны х, тогда гипотенуза равна
.
.
d)sin30=cos60=1/2, cos30=sin60=√3/2