Данный график представляет собой гиперболу , отображенную симметрично оси абсцисс и сдвинутую на 5 единиц вниз. Помним про то, что функция не определена в точках 0 и 2.
Прямая представляет собой прямую, параллельную оси абсцисс, проходящую через точку (0; m).
Прямая не имеет общих точек с построенным графиком при (асимптота гиперболы по построению, так как сдвиг проводился на 5 единиц вниз) и при (именно это значение принимала бы функция в точке 2, но эта точка не принадлежит области ее определения).
На [-π/4;0] таких точек нет, функция определена во всех точках указанного отрезка. Находим y`: y`=(7/cos²x)-7. Находим точки возможных экстремумов: точки, в которых производная обращается в 0 или не существует. y` не существует в точках (π/2)+πk, k∈ Z. y`=0 (7/cos²x)-7=0; (7-7cos²x)/cos²x=0; 7-7cos²x=0 7(1-cos²x)=0 7sin²x=0 sinx=0 x=πn, n∈ Z. Указанному отрезку принадлежит одна точка х=0, но она является крайней правой точкой. На [-π/4;0] y`=7sin²x/cos²x=7tg²x>0 ⇒ функция возрастает на указанном отрезке и наибольшее значение принимает в крайней правой точке, т. е. при х=0. у(0)=7·tg(0) - 7·0+5=5. О т в е т.у= 5 - наибольшее значение функции на [-π/4;0]
3х(2)-7х-6
Объяснение:
(3х+2)(х-3)=3х(2)-9х+2х-6=3х(2)-7х-6
(2) в скобках обозначена степень числа.