М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
urybalka27
urybalka27
31.12.2020 04:57 •  Алгебра

Скласти три різні квадратні рівняння у кожного з яких будуть корені 1.5 та 2.7

👇
Открыть все ответы
Ответ:
liza10pav
liza10pav
31.12.2020

Сначала разделим левую и правую часть уравнения на x, получим:

y'+\frac{2}{x}y=\frac{1}{x^2} 

Решим сначала однородное уравнение, вида:

y'+\frac{2}{x}y=0 

Это уравнение с разделяющимися переменными, получаем:\frac{dy}{dx}+\frac{2}{x}y=0

 

\frac{dy}{dx}=-\frac{2}{x}y

 

\frac{dy}{y}=-\frac{2}{x}dx

Берем интеграл от обоих частей получаем: 

 

\int{\frac{dy}{y}}=-\int\frac{2}{x}dx

ln(y)=-2ln(x) 

y=\frac{C}{x^2} 

Дальше методом вариации свободной постоянной ищем частное решение неоднородного уравнения:

Представляем C как функцию от х, т.е C=C(x) и подставляем выражение   y=\frac{C(x)}{x^2} в исходное уравнение. Получаем:

\frac{xC'(x)-2C(x)}{x^3}+\frac{2}{x}\frac{C(x)}{x^2}=\frac{1}{x^2} 

Сокращаем подобные и прочее, получаем:

\frac{C'(x)}{x^2}=\frac{1}{x^2} \\ C'(x)=1 \\ C(x)=x 

Подставляем получившееся значение C(x) в выражение   y=\frac{C}{x^2}  и получаем частное решение y=\frac{1}{x} 

В итоге общее решение неоднородного уравнения это сумма общего решения однородного уравнения и частного решения неоднородного уравнения. Т.е.

Y=\frac{C}{x^2}+\frac{1}{x} 

Все, уравнение решено. Теперь решаем задачу Коши:

Т.к. y_0=1\\x_0=3 

то приходим к уравнению 1=\frac{C}{9}+\frac{1}{3}\\ \frac{C}{9}=\frac{2}{3}\\ C=6 

Все, нашли С, теперь пишем решение задачи Коши:

Y_0=\frac{6}{x^2}+\frac{1}{x} 

ответ: Общее решение дифференциального уравнения:

  Y=\frac{C}{x^2}+\frac{1}{x} 

Частное решение дифференциального уравнения, удовлетворяющиего начальному условию y_0=1, x_0=3 :

  Y_0=\frac{6}{x^2}+\frac{1}{x} 

 

 

 

 

4,7(35 оценок)
Ответ:
JiJiMi
JiJiMi
31.12.2020
Экстремум - максимальное или минимальное значение функции.
 Точка, в которой достигается экстремум, называется точкой экстремума. Соответственно, если достигается минимум - точка экстремума называется точкой минимума,
а если максимум — точкой максимума.

А теперь решение:

1) 
\displaystyle y=x^3-6x^2

необходимое условие экстремума функции одной переменной- в этой точке первая производная функции должна обращаться в нуль. 

Найдем производную
\displaystyle y`=(x^3-6x^2)`=3x^2-12x

приравняем ее к нулю

\displaystyle 3x^2-12=0\\3x(x-4)=0\\x_1=0; x_2=4

 у нас две точки экстремума. Определим теперь какие это точки (максимума или минимума)

- Точка  x₀ называется точкой максимума, если существует её окрестность, такая, что для всех значений  данной окрестности выполнено неравенство: f(x)≤f(x₀)
 - Точка x₀ называется точкой минимума, если существует её окрестность, такая, что для всех значений  данной окрестности выполнено неравенство: f(x)≥f(x₀)

Как это выглядит на решении?

нарисуем числовую прямую и отметим на ней точки- экстремумы и проверим знак производной на полученных интервалах:

   +           -                  +
------- 0 ------------ 4 -----------

Значит на промежутке (-оо;0) функция возрастает 
на промежутке (0;4) - убывает
на промежутке (4;+оо) - возрастает

Значит х=0 точка максимума
значит х=4 точка минимума

Значение функции в точке х=0
\displaystyle y(0)=0 - максимальное значение

значение функции в точке х=4
\displaystyle y(4)=4^3-6*4^2=64-96=-32 -минимальное значение

Далее решает по аналогии

2) 
\displaystyle y=x^4-4x^3

найдем точки экстремума

\displaystyle y`=(x^4-4x^3)`=4x^3-12x^2

\displaystyle 4x^3-12x^2=0\\4x^2(x-3)=0\\x_1=0; x_2=3

  +          -               +
----- 0 --------- 3 ------------
 на промежутке (-оо;0) и (3;+оо) - возрастает
на промежутке (0;3) убывает

х=0 точка максимума \displaystyle y(0)=0 максимальное значение функции
х=3 точка минимума \displaystyle y(3)=3^4-4*3^3=81-108=-27 минимальное значение функции

3) 
\displaystyle y= \frac{x^3}{3}+x^2-3x+5

\displaystyle y`=( \frac{x^3}{3}+x^2-3x+5)`=x^2+2x-3

\displaystyle y`=0\\x^2+2x-3=0\\D=4+12=16=4^2\\x_1=1: x_2=-3

   +              -               +
------  - 3  -------  1 ----------

на промежутке (-00;-3) и (1;+оо) возрастает
на промежутке (-3;1) убывает

х= -3 точка максимума
\displaystyle y(-3)= \frac{(-3)^3}{3}+(-3)^2-3*(-3)+5=-9+9+9+5=14
минимальное значение

x=1 точка минимума
\displaystyle y(1)= \frac{1}{3}+1-3+5= 3 \frac{1}{3} минимальное значение

4) 
\displaystyle y=2x^3-9x^2-60x+1

\displaystyle y`=(2x^3-9x^2-60x+1)`=6x^2-18x-60

\displaystyle y`=0\\ 6x^2-18x-60=0\\6(x^2-3x-10)=0\\D=9+40=49=7^2\\x_1=-2; x_2=5

    +              -          +
------- - 2 -------- 5 --------
на промежутке (-оо;-2) и (5;+оо) возрастает
на промежутке (-2;5) убывает

точка х=-2 точка максимума
\displaystyle y(-2)=2*(-2)^3-9*(-2)^2-60*(-2)+1=69
максимальное значение

точка х=5 точка минимума
\displaystyle y(5)=2*5^3-9*5^2-60*5+1=250-225-300+1=-274
минимальное значение

5)
\displaystyle y=x^4+2x^2+1

\displaystyle y`=(x^4+2x^2+1)`=4x^3+4x

\displaystyle y`=0\\4x^3+4x=0\\4x(x^2+1)=0\\x=0

       -                       +
-------------- 0 ----------------
на промежутке (-оо;0) убывает
на промежутке (0;+оо) возрастает

x=0 точка минимума

\displaystyle y(0)=1
минимальное значение функции
4,5(47 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ