C(3;54)
просто подставляем в уравнение y= 2x³ значения точек, на место x идёт первое число( например у точки C это 3), а на место y второе число(то есть 54). Последняя точка D явно не будет подходить, так как первое число отрицательное, а второе положительное( а степень в уравнении третья, поэтому с каким знаком первое число, с таким и будет ответ).
Для точки А : 3 = 2 × 0³ не подходит( 3≠ 0)
Для точки В : 24 = 2× 2³, 24 = 2× 8 не подходит (24≠16)
Для точки С : 54= 2× 3³, 54= 2× 27 - верно (54 = 54)
Для точки Д : -2 = 2 × 15³ - не подходит ( -2 отрицательное, но 2 × 15³ не может быть отрицательным)
Дано неравенство: 6x² − x - 5 > 0.
Находим корни квадратного трёхчлена: 6x² − x - 5 = 0.
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:
D=(-1)^2-4*6*(-5)=1-4*6*(-5)=1-24*(-5)=1-(-24*5)=1-(-120)=1+120=121;
Дискриминант больше 0, уравнение имеет 2 корня:
x1=(√121-(-1))/(2*6)=(11-(-1))/(2*6)=(11+1)/(2*6)=12/(2*6)=12/12=1;
x2=(-√121-(-1))/(2*6)=(-11-(-1))/(2*6)=(-11+1)/(2*6)=-10/(2*6)=-10/12=-(5/6)≈-0.833333.
откуда x1 = 1 и x2 = -(5/6).
Раскладываем левую часть неравенства на множители: 6(x – 1) (x +(5/6)) > 0. Точки -5/6 и 1 разбивают ось X на три промежутка:
ОО⟶Х
-5/6 1
Точки -5/6 и 1 выколоты. Это связано с тем, что решаемое неравенство — строгое (так что x не может равняться -5/6 или 1). Далее определяем знаки левой части неравенства на каждом из промежутков
+ – +
ОО⟶Х
-5/6 1
Получаем: x < -5/6 или x > 1.