Пусть х и у - трёхзначные числа, т.е. 100 ≤ x < 1000 и 100 ≤ у < 1000, тогда по условию х + у= 498k и х/у = 5n, т.е. х = 5ny и поэтому т.к. х < 1000, у < 200 (х = 5ny и у < 1000), тогда х + у < 1200 и, значит, k = 1 или k = 2.
Если k = 1, то х + у = 498, х = 5ny, откуда 5ny + y = 498. Т.к. у ≥ 100, тогда
5ny + y ≥ 500 + 100 = 600 (уже при n = 1) - чего не может быть, т.к. в эом случае х + у = 498.
Если k = 2, то х + у = 498 · 2 = 996 и т.к. х = 5ny, то получим, что
5ny + у = 996.
Тк. у ≥ 100, то 5ny + у ≥ 500n + 100.
если n > 1, то 500n + 100 > 996, поэтому это невозможно и, следовательно, n = 1. Тогда получим, что 5у + у = 996, 6у = 996, у = 166, а, значит, х = 166 · 5 = 830.
ответ: 830 и 166.
1)Степень некоторого числа с отрицательным (целым) показателем определяется как единица, делённая на степень того же числа с показателем, равным абсолютной величине отрицательного показателя: а – n = ( 1 / an )
2)Степень любого ненулевого числа с нулевым показателем равна 1:
a^0 = 1
Например: 2^0 = 1, (-5)^0 = 1, (3 / 5)^0 = 1
3)При умножении степеней с одинаковыми основаниями основание остаётся без изменений, а показатели степеней складываются.
am · an = am + n ,
где «a» — любое число, а «m», «n» — любые натуральные числа.
Пример:
b · b2 · b3 · b4 · b5 = b 1 + 2 + 3 + 4 + 5 = b15