Величина одного из углов прямоугольной трапеции равна 135 найдите площадь этой трапеции если верхнее основание равно 6 см а большая боковая сторона 10 в корне 2 см
Метод интервалов – простой решения дробно-рациональных неравенств. Так называются неравенства, содержащие рациональные (или дробно-рациональные) выражения, зависящие от переменной. Метод интервалов позволяет решить его за пару минут.В левой части этого неравенства – дробно-рациональная функция. Рациональная, потому что не содержит ни корней, ни синусов, ни логарифмов – только рациональные выражения. В правой – нуль.Метод интервалов основан на следующем свойстве дробно-рациональной функции.Дробно-рациональная функция может менять знак только в тех точках, в которых она равна нулю или не существует. Найдем нули функции в левой части нашего неравенства. Для этого разложим числитель на множители. Напомним, как раскладывается на множители квадратный трехчлен, то есть выражение вида . Рисуем ось и расставляем точки, в которых числитель и знаменатель обращаются в нуль.Эти точки разбивают ось на N промежутков.Определим знак дробно-рациональной функции в левой части нашего неравенства на каждом из этих промежутков. Мы помним, что дробно-рациональная функция может менять знак только в тех точках, в которых она равна нулю или не существует. Это значит, что на каждом из промежутков между точками, где числитель или знаменатель обращаются в нуль, знак выражения в левой части неравенства будет постоянным — либо «плюс», либо «минус».
1) Если а>0, то обе части первого неравенства можно разделить на а, при этом знак неравенство останется тем же, т.е. 1-ое неравенство станет x<8/a, а второе неравенство x>8/a, задают непересекающиеся множества решений.Поэтому такие а не годятся. 2) Если а=0, то второе неравенство не имеет смысла, значит а=0 не подходит. 3) Если а<0, то разделим обе части первого неравенства на а. При этом знак неравенства изменится на противополжоный, т.е. первое неравенство станет x>8/a, что совпадает со вторым неравенством. Значит и множества их решений совпадают. Итак, ответ: при а<0.
решение смотри на фотографии
Объяснение: