М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
tarasova19781
tarasova19781
23.08.2022 14:28 •  Алгебра

За до графіків функції установіть скільки коренїв має рівняння ✓x=-4+5(побудувати графік функції)
А) один
В) два
Б) визначити неможливо
Г) жодного ДО ТЬ БУДЬ ЛАСКА

👇
Открыть все ответы
Ответ:
zzz26101973
zzz26101973
23.08.2022

Объяснение:

Последовательность называется возрастающей, если для любого n∈N выполняется неравенство yn<yn+1.

Последовательность называется убывающей, если для любого n∈N  выполняется неравенство yn>yn+1.

Выпишем n-й и n+1-й члены последовательности: yn=n213n, yn+1=(n+1)213n+1.

 

Чтобы сравнить эти члены, составим их разность и оценим её знак:

yn+1−yn=(n+1)213n+1−n213n=(n2+2n+1)−13n213n+1=2n+1−12n213n+1

 

Для натуральных значений n справедливы неравенства 2n≤6n2 и 1<6n2.

Сложив их, получим 1+2n<12n2, т.е. для любых натуральных значений n справедливо неравенство 2n+1−12n213n+1<0, значит, yn+1−yn<0.

 

Итак, для любых натуральных значений n выполняется неравенство yn+1<yn,

а это значит, что последовательность (yn) убывает.

4,4(21 оценок)
Ответ:
BrainSto
BrainSto
23.08.2022
Так, так, так. У линейной функции возрастание/убывание зависит от углового коэффицента k y=kx+m : если k>0, функция возрастает, k<0 - убывает. Всё просто. Т.е. в убывании обе функции линейные, k<0 и в первом (k=-7), и во втором y=4- \frac{1}{3}x; k=- \frac{1}{3}. С этим разобрались. Теперь к возрастанию. Я не знаю, в каком Вы классе, постараюсь объяснить доступно. Чтобы определить возрастание/убывание функции, нужно взять значения x_1; x_2, два произвольных числа, но x_1\ \textless \ x_2 . Пусть мы имеем функцию y=f(x), тогда вычисляем значения функции в этих двух точках, имеем f(x_1) и f(x_2), так вот, если x_1\ \textless \ x_2; f(x_1)\ \textless \ f(x_2);, тогда функция возрастающая, если же x_1\ \textless \ x_2; f(x_1)\ \textgreater \ f(x_2), то она убывающая, но только ПРИ УСЛОВИИ, что она монотонна на всей области определения (т.е. ТОЛЬКО возрастает или ТОЛЬКО убывает), в противном случае мы говорим о ПРОМЕЖУТКАХ возрастания и убывания. 1)y=x^3+1; x_1=-2; f(x_1)=(-2)^3+1=-7; x_2=4;x_1\ \textless \ x_2 \\ f(x_2)=4^3+1=65; f(x_1)\ \textless \ f(x_2), т.е. функция возрастающая. А вот задание с y= \frac{x^2}{2} не совсем корректно, так как эта функция возрастает только при x>0, при x<0 она убывает, x=0 - Точка экстремума. Если уж брать математический анализ, то легко взять производную и исследовать функцию на "скорость изменения" (алгебраический смысл производной) y= \frac{x^2}{2}; y'= \frac{2x}{2}=x;. Если производная в некоторой точке отрицательная, то функция убывает, если производная положительная, то функция возрастает, если производная равна 0, то это точка экстремума. Очевидно, что при x<0 функция убывает, при x>0 возрастает. Если же доказывать возрастание на промежутке x>0, тогда действуем, как и в первом случае (только не берем значения из ненужного нам промежутка): x_1=1; x_2=2; x_1\ \textless \ x_2; f(x_1)= \frac{1}{2};f(x_2)=2; f(x_1)\ \textless \ f(x_2), функция возрастает, что и требовалось доказать.
4,7(58 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ