Даны множества a={3; 5; 8; 10; 12; 15}, b={2; 4; 8; 10; 11; 15; 16} и c={3; 4; 8; 10; 15; 17}. найдите число элементов множества (b\a)∪(c\a) a) 5 b) 6 c) 7 d) 8
сразу приношу извинения за невозможность нарисовать куб/не работает вложение/, но это совсем не сложно. откройте любой учебник. посмотрите, как он рисуется. дальше, т.к. сечение соединяет два противолежащих ребра куба, будет прямоугольником, (доказать легко- два противоположных ребра куба равны и параллельны и ребро куба перпендикулярно стороне, например, основания, т.е. квадрата, лежащего в основании, тогда оно перпендикулярно и диагонали квадрата - боковой грани по теореме о трех перпендикулярах. площадь этого сечения 64√2 см², пусть, сторона основания х, тогда диагональ боковой грани х√2 см, т.к. все стороны квадрата х, значит, х*х√2=64√2⇒х=8, значит, ребро куба 8 см, квадрат диагонали куба равен сумме квадратов трех его измерений, значит, диагональ куба равна х√3=8√3/см.
Какое наименьшее значение и при каком значении переменной принимает выражение х²+14х-16?
при х=-14/2 x=-7 y (-7)=(-7)²+14(-7)-16=49-98-16=-65
или рассмотрим функцию y=х²+14х-16=(x+7)²-65, графиком этой функции является парабола, ветки параболы направлены вверх, (коэффициент при х² равен 1>0), вершина параболы - точка с координатами х0=-7, у0=-65, в вершине функция y=х²+14х-16 принимает наименьшее значение.
Таким образом, наименьшее значение выражение х²+14х-16 принимает при х0=-7 , и оно равно у0=-65.
сразу приношу извинения за невозможность нарисовать куб/не работает вложение/, но это совсем не сложно. откройте любой учебник. посмотрите, как он рисуется. дальше, т.к. сечение соединяет два противолежащих ребра куба, будет прямоугольником, (доказать легко- два противоположных ребра куба равны и параллельны и ребро куба перпендикулярно стороне, например, основания, т.е. квадрата, лежащего в основании, тогда оно перпендикулярно и диагонали квадрата - боковой грани по теореме о трех перпендикулярах. площадь этого сечения 64√2 см², пусть, сторона основания х, тогда диагональ боковой грани х√2 см, т.к. все стороны квадрата х, значит, х*х√2=64√2⇒х=8, значит, ребро куба 8 см, квадрат диагонали куба равен сумме квадратов трех его измерений, значит, диагональ куба равна х√3=8√3/см.
ответ 8 см, 8√3см