Б) f(x)=4-2x f`(x)=(4-2x)`=(4)`-(2x)`=0-2·(x)`=-2·1=-2 Применили правила: производная суммы( разности) равна сумме( разности) производных Производная постоянной (C)`=0 Постоянный множитель можно вынести за знак производной (х)`=1 Производная принимает во всех точках одно и то же значение (-2) f`(0,5)=f`(-3)=-2
в) f(x)=3x-2 f`(x)=(3x-2)`=(3х)`-(2)`=3·(x)`-0=3·1=3 Применили правила: производная суммы( разности) равна сумме( разности) производных Производная постоянной (C)`=0 Постоянный множитель можно вынести за знак производной (х)`=1 Производная принимает во всех точках одно и то же значение (3) f`(5)=f`(-2)=3
N = n*k+0,75*4*n= n* (k+3) Для начала мы знаем, что все обычные места (не откидные) заняты. Чтобы вычислить кол-во людей на них, надо умножить кол-во рядов (n) на кол-во кресел в каждом (K) Теперь откидные кресла. Так как осталось 25 % свободно,занято 100-25=75%. Чтобы проценты перевести в числовой эквивалент, надо 75 разделить на 100, получим 0,75 Всего откидных кресел 4 (в каждом ряду) умноженное на кол-во рядов, то есть на все те же N. Итого у нас занято откидных кресел 0,75*4*n Складываем зрителей на обычных и откидных креслах, выносим общий множитель (n) за скобки и производим умнижение известных чисел (0,75*4=3) В итоге получаем N = n* (k+3)
f`(x)=(4-2x)`=(4)`-(2x)`=0-2·(x)`=-2·1=-2
Применили правила:
производная суммы( разности) равна сумме( разности) производных
Производная постоянной (C)`=0
Постоянный множитель можно вынести за знак производной
(х)`=1
Производная принимает во всех точках одно и то же значение (-2)
f`(0,5)=f`(-3)=-2
в) f(x)=3x-2
f`(x)=(3x-2)`=(3х)`-(2)`=3·(x)`-0=3·1=3
Применили правила:
производная суммы( разности) равна сумме( разности) производных
Производная постоянной (C)`=0
Постоянный множитель можно вынести за знак производной
(х)`=1
Производная принимает во всех точках одно и то же значение (3)
f`(5)=f`(-2)=3