Найдем точку пересечения функции x²-2x+3 с осью х x²-2x+3=0 D=2²-4*3=4-12=-8 Корней нет. Следовательно, с осью х не пересекается Ищем точку пересечения с осью у х=0 y=0²+2*0+3=3 (0;3) - искомая точка Находим производную y'=2x-2 y'(x₀)=2*0-2=-2 Уравнение касательной общем виде y = f(x₀) + f '(x₀)(x – x₀)) y=3-2(x-0) y=3-2x ответ: y=-2x+3 (наверно, это ответ С, там опечатка)
у=1/2x^2 - 2x + 6/7 y'=x-2 x-2=0 x=2 ответ: 2 (D)
f (x) = x+1/x-1 проведенной в точке М (2;3). f (x) = x+x⁻¹-1 f '(x) = 1-x⁻² x₀=2 f '(2) = 1-2⁻²=1-1/4=3/4=0.75 f (2)=2+1/2-1=3/2=1.5 Уравнение касательной общем виде y = f(x₀) + f '(x₀)(x – x₀)) y=1.5+0.75(x-2) y=1.5+0.75x-1.5 y=0.75x ответ: y=0.75x (вообще ничего похожего нет!) Это потому что т.М не принадлежит данной кривой - ее координаты не удовлетворяют данному уравнению
Наверно, я не так условие понял. Ну-ка, попробуем по-другому f (x) = (x+1)/(x-1) проведенной в точке М (2;3). x₀=2 f (x₀) = (2+1)/(2-1)=3 (Да, теперь подходит) f '(x) = [(x+1)'(x-1)-(x+1)(x-1)']/(x-1)²=(x-1-(x+1))/(x-1)²=-2/(x-1)² f '(2)=-2/(2-1)²=-2 Уравнение касательной общем виде y = f(x₀) + f '(x₀)(x – x₀)) y=3-2(x-2) y=3-2x+4 y=7-2x ответ: y=7-2x (все-равно, нет такого ответа)
Прежде всего отметим, что число матчей, сыгранных с другими командами увеличивается от 0 до 19 и точно не больше 19.
Если предположить, что есть момент, когда все команды сыграли разное число матчей, то это возможно при единственном раскладе
1) есть только одна команда, которая не играла (0) 2) есть только одна команда, которая сыграла ровно одну игру (1) 3) есть только одна команда, которая сыграла ровно две игры (2) . . . 20) есть только одна команда, которая сыграла ровно 19 игр (19)
Только так реализуются 20 различных чисел от 0 до 19. Получаем противоречие - последняя команда сыграла со всеми, но первая почему-то не играла ни с кем.
Значит предположение неверно, и поэтому в любой момент состязаний имеются две команды, сыгравшие к этому моменту одинаковое количество матчей
x²-2x+3=0
D=2²-4*3=4-12=-8
Корней нет. Следовательно, с осью х не пересекается
Ищем точку пересечения с осью у
х=0 y=0²+2*0+3=3
(0;3) - искомая точка
Находим производную
y'=2x-2
y'(x₀)=2*0-2=-2
Уравнение касательной общем виде
y = f(x₀) + f '(x₀)(x – x₀))
y=3-2(x-0)
y=3-2x
ответ: y=-2x+3 (наверно, это ответ С, там опечатка)
у=1/2x^2 - 2x + 6/7
y'=x-2
x-2=0
x=2
ответ: 2 (D)
f (x) = x+1/x-1 проведенной в точке М (2;3).
f (x) = x+x⁻¹-1
f '(x) = 1-x⁻²
x₀=2
f '(2) = 1-2⁻²=1-1/4=3/4=0.75
f (2)=2+1/2-1=3/2=1.5
Уравнение касательной общем виде
y = f(x₀) + f '(x₀)(x – x₀))
y=1.5+0.75(x-2)
y=1.5+0.75x-1.5
y=0.75x
ответ: y=0.75x (вообще ничего похожего нет!)
Это потому что т.М не принадлежит данной кривой - ее координаты не удовлетворяют данному уравнению
Наверно, я не так условие понял. Ну-ка, попробуем по-другому
f (x) = (x+1)/(x-1) проведенной в точке М (2;3).
x₀=2
f (x₀) = (2+1)/(2-1)=3 (Да, теперь подходит)
f '(x) = [(x+1)'(x-1)-(x+1)(x-1)']/(x-1)²=(x-1-(x+1))/(x-1)²=-2/(x-1)²
f '(2)=-2/(2-1)²=-2
Уравнение касательной общем виде
y = f(x₀) + f '(x₀)(x – x₀))
y=3-2(x-2)
y=3-2x+4
y=7-2x
ответ: y=7-2x (все-равно, нет такого ответа)