Ищем общее решение однородного уравнения y'' - 3y' = 0 в виде y = exp(λx). Подставляя, получаем характеристическое уравнение λ^2 - 3λ = 0, откуда λ = 0 или λ = 3. Общее решение однородного уравнения yo = A + Bexp(3x).
Решение неоднородного уравнения ищем в виде y1 = ax^3 + bx^2 + cx + d. Подставляем: 6ax + 2b - 9ax^2 - 6bx - 3c = 9x^2 + 1 Приравнивая коэффициенты при равных степенях, получаем -9a = 9 6a - 6b = 0 2b - 3c = 1
a = -1 b = -1 c = -1
В качестве частного решения можно взять y1 = -x^3 - x^2 - x.
Общее решение неоднородного уравнения - сумма частного решения неоднородного уравнения и общего решения однородного.
Г −6y=12
Объяснение:
Определи уравнение прямой, изображённой на данном рисунке:
А −3x=9
Б x+2=0
В y−3=0
Г −6y=12 ⇒ 6у= -12 ⇒ у= -2
Д −x+4=0
Е 2x=4