1. Нули:
х=0, тогда у=2
4-|х+2|=0
|х+2|=4
Это равносильно двум уравнениям:
х+2=4
х+2=-4
или
x=2
x=-6
2. Промежутки знакопостоянства:
4-|х+2|>0
или
|х+2|<4
или
-4<х+2<4
-6<х<2
Функция положительна на интервале (-6;2) и соответственно отрицательна при остальных значениях х.
3. Функция равносильна двум.
у=4-х-2=2-х (при х+2>0 или х>-2)
у=4+х+2=6+х (при х+2<0 или х<-2)
Их производные соответственно равны -1 и 1
Следовательно первая убывает (на промежутке от -2 до + бесконечности), а вторая возрастает (от - бесконечности до -2)
1. Нули:
х=0, тогда у=2
4-|х+2|=0
|х+2|=4
Это равносильно двум уравнениям:
х+2=4
х+2=-4
или
x=2
x=-6
2. Промежутки знакопостоянства:
4-|х+2|>0
или
|х+2|<4
или
-4<х+2<4
-6<х<2
Функция положительна на интервале (-6;2) и соответственно отрицательна при остальных значениях х.
3. Функция равносильна двум.
у=4-х-2=2-х (при х+2>0 или х>-2)
у=4+х+2=6+х (при х+2<0 или х<-2)
Их производные соответственно равны -1 и 1
Следовательно первая убывает (на промежутке от -2 до + бесконечности), а вторая возрастает (от - бесконечности до -2)
ответ: p≈0,352.
Объяснение:
Пусть событие А состоит в том, что из 8 вынутых шаров 3 будут красными. Всего в урне N=12+8=20 шаров, поэтому общее число которыми можно выбрать 8 шаров из 20, равно n=С(20,8), где C(n,k) - число сочетаний из n по k. Число благоприятствующих появлению события А, равно m=C(8,3)*C(12,5). Искомая вероятность p=m/n=C(8,3)*C(12,5)/C(20,8)≈0,352.