В линейной функции любому значению аргумента всегда соответствует однозначное значение функции.
Точки можно брать любые. Для построения графика надо брать в пределах размера бумаги, на которой строится график,
Часто принимают х = 0, тогда у этой точки легко находится.
Например, y = 3 - 6*0 = 3.
И вторую точку по х можно взять, чтобы удобно было определить значение функции.
Например, х = 2, у = 3 - 6*2 = 3 - 12 = -9.
Эта точка далековато расположена, можно взять х = 1,
Тогда у = 3 - 6*1 = 3 - 6 = -3.
Иногда функцию приравнивают 0 и находят х.
0 = 3 - 6*х,
6х = 3,
х = 3/6 = 1/2.
2b⁵-16b² = 2b²(b³-8) = 2b²(b-2)(b²+2b+4)
x²-4xy+4y²+2x-4y = (x-2y)² +2(x-2y) = (x-2y)(x-2y+2)
3a-81a⁴ = 3a(1-27a³) = 3a(1-3a)(1+3a+9a²)
9x²+6xy+y²-6x-2y = (3x+y)² - 2(3x+y) = (3x+y)(3x+y-2)
28x³+3x²+3x+1 = 27х³ + (х+1)³=(3х+х+1)(9х²-3х²-3х+х²+2х+1)=(4х+1)(7х²-х+1)
x²+4x-y²-2x+3 = тут невозможно разложить
2x³-3x²+3x-1 = х³ + (х-1)³ = (х+х-1)(х²-х²+х+х²-2х+1) = (2х-1)(х²-х+1)
x²+2x-y²-6y-8 = (х²+2х+1) - (у²+6у+9) = (х+1)² - (у+3)² = (х-у-2)(х+у+4)
x(x+3)(x-4)=0
неравенство будет верно, если хотя бы один из множителей будет равен 0, а множители у тебя : х, х+3, х-4.
вот ты каждый множитель приравниваешь к 0, и находишь х.
х=0
или
х+3=0
х=-3
или х-4=0
х=4
у тебя получилось 3 значения х, при которых это неравенство будет выполнено: 0, -3, 4.
теорема.средняя линия трапеции параллельна основаниям и равна их полусумме.
пусть abcd – данная трапеция.
ef – средняя линия трапеции. проведём через вершину b и точку f прямую. пусть эта прямая пересекает прямую ad в некоторой точке g. δ cfb = δ fdg по второму признаку равенства треугольников (cf = fd, по построению, ∠ bcf = ∠ пва, как внутренние накрест лежащие при параллельных прямых вс и dg и секущей cd, ∠ cfb = ∠ dfg, как вертикальные).
значит bc = dg и bf = fg. следовательно, средняя линия трапеции ef является средней линией треугольника abg. по свойству средней линии треугольника ef || ad, а
Объяснение:
Дано: ABCD — трапеция, ВС=AD, АВ||CD, т.Е∈АВ;
∠СВА=∠DAE=∠DEC, DE=6, EC=10.
Найти: ВЕ:АЕ.
Решение.
∠СВА=∠DAE=∠DEC=α.
∠DEA=∠CDE=β как накрест лежащие при секущей ED и AB||CD.
∠BEC=∠ECD=γ как накрест лежащие при секущей ЕС и AB||CD.
Прямая АВ, т.Е лежит на ней. ∠ВЕС+∠CED+∠DEA=180°.
В ΔCBE: ∠CBA=α, ∠BEC=γ, ∠ВСЕ=β.
В ΔEDC: ∠DEC=α, ∠CDE=β, ∠ECD=γ.
В ΔEAD: ∠DAE=α, ∠DEA=β, ∠EDA=γ.
Треугольники СВЕ, EDC и EAD подобны (по трем углам)
Значит, их соответственные стороны относятся.
Пусть BC=AD=x.
Через подобные треугольники СВЕ и EAD найдем (выразим) стороны ВЕ и АЕ.
1) ВЕ/AD=CE/ED;
BE/x= 10/6;
BE= 10x/6;
BE= 5x/3.
2) BC/AE=CE/ED;
x/AE= 10/6;
AE= 6x/10;
AE= 3x/5.
BE:AE= 5x/3 : 3x/5 = 5x/3 • 5/3x= 25x/9x= 25:9.
ответ: ВЕ:АЕ=25:9.