Пусть п = масса песка (первоначальная) , б = масса (первоначальная) всего остального в смеси. Полная масса смеси = п+б (первоначальная) . Т. е. 1) п/(п+б) = 0,3; Добавили еще 12 кг - и стало песка 45%: 2) (п+12)/(п+б+12) = 0,45. Из этих двух уравнений находим первоначальную массу песка (она чуть позже понадобится) : 1) п = 0,3(п+б) -> 0,7п = 0,3б -> б = 7/3*п; 2) (п+12) =0,45(п+б+12); -> п + 12 = 0,45п + 0,45б + 5,4 -> 0,55п = 0,45б - 6,6 -> подставляем б из предыдущего уравнения -> 0,55п = 0,45*7/3*п - 6,6 -> 0,55п = 0,15*7*п - 6,6 -> 0,5п = 6,6 -> п = 13,2 кг. Теперь пусть x - масса песка, которую нужно добавить, чтобы его доля в общей массе смеси была 60%: (п+12+x)/(п+б+12+x) = 0,6; п + 12 + x = 0,6(п+б+12+x); раскрываем скобки: 0,4п + 4,8 + 0,4x = 0,6б; подставляем б из первого уравнения (б = 7/3*п) : 0,4п + 4,8 + 0,4x = 1,4п; 4,8 + 0,4x = п; отсюда x = (п - 4,8)/0,4; Подставляем п (мы его нашли чуть выше, п = 13,2): x = (13,2 - 4,8)/0,4 = 21
Условные обозначения: <= -меньше либо равно >= - больше либо равно Pi - число Пи
-1 <= cos(3x)<=1 Решаем систему: cos(3x)<=1, cos(3x)>=-1; Косинус равен единице при 2*Pi*n, n=0, +1, -1, +2, -2, .. Косинус равен минус единице при Pi + 2*Pi*n, n=0, +1, -1, +2, -2, .. Система примет вид: 3x <= 2*Pi*n, 3x >= Pi + 2*Pi*n; Итого, что касается косинуса: x <= (2/3)*Pi*n, x>=(Pi/3) + (2/3)*Pi*n,
Если смотреть по оси X, то график самого косинуса у тебя будет определен на кусочках, отмеченных 00. На отрицательной оси тоже такие же кусочки будут. По Y график на этих интервалах будет ограничен -1 снизу и 1 сверху.