Примем: Х км/час скорость по шоссе; 32/Х время по шоссе; (Х+20) скорость по автостраде; 60/(Х+20) время по автостраде. Так как общее время = 1 час, составим и решим уравнение: 32/Х + 60/(Х+20) = 1; приведем к общему знаменателю (Х*(Х+20)) и избавимся от него, умножив на него все члены уравнения: 32Х + 640 + 60Х = Х² + 20Х; Х²-72Х - 640 = 0; Д=72²+4*640 = 5184+2560 = 7744; Д>0, продолжим; Х₁ = (72 + √Д)/2 = (72 + √7744)/2 = (72+88)/2 = 80 (км/час); Х₂ =72-√Д = -8 (в расчет не берем, как не имеющий смысла) Х+20 = 80+20 = 100 (км/час); ответ: скорость по шоссе 80км/час; скорость по автостраде 100 км/час; Проверка: 32/80 +60/100 = 1; 0,4+0,6=1; 1=1
1. 3x + 1 = (√3x + 1)² => √3x + 1 можно принять за t, а 3x + 1 — за t². Тогда t² + t = 2 t² + t - 2 = 0 Решаем через дискриминант: D = b² - 4ac D = 1 - 4*1*(-2) = 1 + 8 = 9 = 3² x1 = (-b - √D)/(2a) = (-1 - 3)/2 = -2 x2 = (-b + √D)/(2a) = (-1 + 3)/2 = 1 Мы должны проверить оба ответа, так как икс находится под корнем: √3x + 1 = √3*1 + 1 = √4 (Корень извлекается => 1 в ответ записываем.) √3x + 1 = √3*(-2) + 1 = √-5 (Корень не извлекается из отрицательного числа => в ответ -2 не записываем.) ответ: 1. То же проделать со вторым и третьим примерами.
Объяснение:
ОДЗ: x∈(2;27)
(x-2)(27-x)<100
27x-x²-54+2x-100<0
-x²+29x-154<0
x²-29x+154>0
D= 841-616=225
x1= (29-15)/2= 7
x2=(29+15)/2= 22
(x-7)(x-22)>0
(-∞;7)∪(22;+∞)
ответ: (2;7)∪(22;27)
Наибольшее целое решение 26