вот пример делай по нему Найти производную y=9-8cosx, нули производной и границы интервалов - точки возможного максимума. x=arccos(9/8); -pi/2; 0. Первого значения, не существует(если бы существовало, то следовало бы проверить, что оно находится в требуемом интервале), т.к. 9/8>1, а область определения функции arccos [-1;1]. Найдем значение функции на границах: y0=9(-pi/2)-8sin(-pi/2)+7=-4.5pi-8*(-1)+7=(приблизительно)-0.87; y1=9*0-8*sin0+7=7. В точке 0 функция имеет максимум.
1) Найдем такие значения х, при которых выражение под знаком модуля равно 0 х+2=0, х=-2 х-3=0, х=3
2) Нанесем на числовую прямую эти числа и рассмотрим промежутки (смотри вложение)
3) На промежутке [3;+∞) выражения под обеими модулями положительные. Модуль положительного числа равен этому же числу. Раскроем знак модуля х+2+х-3=10,
{2х-1=10 {х≥3
{2х=11 {х≥3
{х=5,5 {х≥3
Число 5,5 принадлежит указанному промежутку, значит, это первый корень
4) На промежутке (-2;3) выражение под первым модулем положительное, а под вторым — отрицательное. Модуль отрицательного числа равен противоположному числу. Раскроем знак модуля х+2-х+3=10
{0х+5=10 {-2<х<3
{0х=5 {-2<х<3
Это уравнение не имеет действительных корней
5) На промежутке (-∞;-2] выражения под обеими модулями отрицательные. Раскроем знак модуля -х-2-х+3=10
{-2х+1=10 {х≤-2
{-2х=9 {х≤-2
{х=-4,5 {х≤-2
Число -4,5 принадлежит указанному промежутку, значит, это второй корень
1) Найдем такие значения х, при которых выражение под знаком модуля равно 0 х+2=0, х=-2 х-3=0, х=3
2) Нанесем на числовую прямую эти числа и рассмотрим промежутки (смотри вложение)
3) На промежутке [3;+∞) выражения под обеими модулями положительные. Модуль положительного числа равен этому же числу. Раскроем знак модуля х+2+х-3=10,
{2х-1=10 {х≥3
{2х=11 {х≥3
{х=5,5 {х≥3
Число 5,5 принадлежит указанному промежутку, значит, это первый корень
4) На промежутке (-2;3) выражение под первым модулем положительное, а под вторым — отрицательное. Модуль отрицательного числа равен противоположному числу. Раскроем знак модуля х+2-х+3=10
{0х+5=10 {-2<х<3
{0х=5 {-2<х<3
Это уравнение не имеет действительных корней
5) На промежутке (-∞;-2] выражения под обеими модулями отрицательные. Раскроем знак модуля -х-2-х+3=10
{-2х+1=10 {х≤-2
{-2х=9 {х≤-2
{х=-4,5 {х≤-2
Число -4,5 принадлежит указанному промежутку, значит, это второй корень
вот пример делай по нему Найти производную y=9-8cosx, нули производной и границы интервалов - точки возможного максимума. x=arccos(9/8); -pi/2; 0. Первого значения, не существует(если бы существовало, то следовало бы проверить, что оно находится в требуемом интервале), т.к. 9/8>1, а область определения функции arccos [-1;1]. Найдем значение функции на границах: y0=9(-pi/2)-8sin(-pi/2)+7=-4.5pi-8*(-1)+7=(приблизительно)-0.87; y1=9*0-8*sin0+7=7. В точке 0 функция имеет максимум.