Обозначим: x-первое число, y- второе число. 30% от первого числа x· 3/10, 40% от второго числа y·4/10, запишем уравнение: x·3/10+y·4/10=10. Во втором случае первое число увеличили на 10%, оно стало равно 110%, 110% от первого числа x·11/10, второе число уменьшили на 20%, следовательно оно равно: 100%-20%=80%, 80% от второго числа y·8/10, составим уравнение:x·11/10+y·8/10=26. Решим систему с двумя неизвестными: x·3/10+y·4/10=10 ·10 x·11/10+y·8/10=26. ·10
3x+4y=100 ·(-2) 11x+8y=260
-6x-8y=-200 11x+8y= 260, складываем эти уравнения, 5x=60 x=12. найдем значение y. 3x+4y=100 4y=100-3x=100-3·12. 4y=64 y=16 ответ: первое число равно 12, второе равно 16
Метод алгебраического сложения заключается в том, чтобы вычитая или же суммируя уравнения системы получить 1 уравнение с 1 неизвестным. Для этого в данном примере можно умножить первое уравнение на 3 с обеих сторон (заметим, что при этом значения неизвестных не изменятся, то есть полученное уравнение будет эквивалентно исходному). После этой операции система будет иметь такой вид:
Теперь, если отнимем от первого уравнения системы второе, то получим следующее: Как видите, мы получили уравнение с 1 неизвестным. Отсюда получаем , а х находим, подставив y в любое из уравнений системы. Удобнее в 1ое в данном случае. Получаем x + 4 * 5 = 9, откуда x = -11. ответ: x = -11; y = 5.
Лчлащутьвлвшв
Объяснение: