М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Kireezy
Kireezy
28.05.2023 17:51 •  Алгебра

"Найти общий вид первообразных для функции"


Найти общий вид первообразных для функции

👇
Ответ:
vasyapupkin121212
vasyapupkin121212
28.05.2023

f(x) = \dfrac{8}{(3 - 5x)^{4}} + \dfrac{3}{\cos^{2}2x} - e^{8x+1}

Совокупность всех первообразных функции f(x) называют неопределенным интегралом:

\displaystyle \int f(x) \, dx = F(x) + C,

где C — произвольная постоянная.

Тогда \displaystyle \int f(x) \, dx = \int \left(\dfrac{8}{(3 - 5x)^{4}} + \dfrac{3}{\cos^{2}2x} - e^{8x+1} \right) \, dx

Теорема: если функции F и G являются соответственно первообразными функций f и g на промежутке I, то на этом промежутке функция y = F(x) \pm G(x) является первообразной функции y = f(x) \pm g(x):

\displaystyle \int \left(f(x) \pm g(x) \right) \, dx = \int f(x) \, dx \pm \int g(x) \, dx = F(x) \pm G(x) + C,

где C — произвольная постоянная.

Тогда \displaystyle \int \left(\dfrac{8}{(3 - 5x)^{4}} + \dfrac{3}{\cos^{2}2x} - e^{8x+1} \right) \, dx =

\displaystyle = \int \dfrac{8}{(3 - 5x)^{4}} dx + \int \dfrac{3}{\cos^{2}2x} dx - \int e^{8x+1} dx

Теорема: если функция F является первообразной для функции f на промежутке I, а k — некоторое число, то на этом промежутке функция y = kF(x) является первообразной функции y = kf(x):

\displaystyle \int kf(x) \, dx = k \int f(x) \, dx = kF(x) + C

Тогда \displaystyle \int \dfrac{8}{(3 - 5x)^{4}} dx + \int \dfrac{3}{\cos^{2}2x} dx - \int e^{8x+1} dx =

= \displaystyle 8 \int \dfrac{dx}{(3 - 5x)^{4}} + 3\int \dfrac{dx}{\cos^{2}2x} - \int e^{8x+1} dx

Теорема: если функция F является первообразной для функции f на промежутке I, а k — некоторое число, отличное от нуля, то на соответствующем промежутке функция y = \dfrac{1}{k} F(kx + b) является первообразной функции y = f(kx + b):

\displaystyle \int f(kx + b) \, dx = \dfrac{1}{k} F(kx + b) + C,

где C — произвольная постоянная.

Найдем каждый интеграл по отдельности:

1) \ \displaystyle \int \dfrac{dx}{(3 - 5x)^{4}} = \int (3 - 5x)^{-4} \, dx = \dfrac{1}{-5} \cdot \dfrac{(3 - 5x)^{-4 + 1}}{-4 + 1} + C =

= \dfrac{1}{15(3 - 5x)^{3}} + C

2) \ \displaystyle \int \dfrac{dx}{\cos^{2}2x} = \dfrac{1}{2} \, \text{tg} \, 2x + C

3) \ \displaystyle \int e^{8x+1} dx = \dfrac{1}{8} e^{8x + 1} + C

Получаем: \displaystyle 8 \int \dfrac{dx}{(3 - 5x)^{4}} + 3\int \dfrac{dx}{\cos^{2}2x} - \int e^{8x+1} dx =

= \dfrac{8}{15(3 - 5x)^{3}} + \dfrac{3}{2} \, \text{tg}\, 2x - \dfrac{1}{8} e^{8x + 1} + C

Таким образом, общий вид первообразных для функции f(x) имеет вид:

\dfrac{8}{15(3 - 5x)^{3}} + \dfrac{3}{2} \, \text{tg}\, 2x - \dfrac{1}{8} e^{8x + 1} + C

ответ: \dfrac{8}{15(3 - 5x)^{3}} + \dfrac{3}{2} \, \text{tg}\, 2x - \dfrac{1}{8} e^{8x + 1} + C

Использованные формулы интегрирования:

\displaystyle \int x^{a} \, dx = \dfrac{x^{a+1}}{a+1} + C, \ a \neq -1

\displaystyle \int \dfrac{dx}{\cos^{2}x} = \text{tg} \, x + C

\displaystyle \int e^{x} \, dx = e^{x} + C

4,4(53 оценок)
Открыть все ответы
Ответ:
Ннггген1113
Ннггген1113
28.05.2023

Объяснение:

х км/ч — скорость течения реки,  

(х + 20) км/ч — собственная скорость теплохода  ( скорость в стоячей воде)

Скорость движения теплохода по течению реки будет:

х+(х+20)=2х+20 км/час

Скорость движения теплохода против течения реки будет :

(х+20)-х=20 км/час

 Значит  можем найти время движения по течению и против течения:

время движения по течению

60 / (2х + 20) час.

против течения

60 / 20 = 3 час.

 Если всего за  5,5 часа , то

5,5 - 3 = 2,5 час. -  движение по течению  

Отсюда :

60 / (2х + 20) = 2,5.

2,5 * (2х + 20)=60

5х + 50=60

5х=10

х = 2 км/час скорость течения реки

2 + 20 = 22 км/ч. собственная скорость теплохода ( скорость в стоячей воде)

 

4,6(59 оценок)
Ответ:
antiangel18
antiangel18
28.05.2023

Объяснение:

х км/ч — скорость течения реки,  

(х + 20) км/ч — собственная скорость теплохода  ( скорость в стоячей воде)

Скорость движения теплохода по течению реки будет:

х+(х+20)=2х+20 км/час

Скорость движения теплохода против течения реки будет :

(х+20)-х=20 км/час

 Значит  можем найти время движения по течению и против течения:

время движения по течению

60 / (2х + 20) час.

против течения

60 / 20 = 3 час.

 Если всего за  5,5 часа , то

5,5 - 3 = 2,5 час. -  движение по течению  

Отсюда :

60 / (2х + 20) = 2,5.

2,5 * (2х + 20)=60

5х + 50=60

5х=10

х = 2 км/час скорость течения реки

2 + 20 = 22 км/ч. собственная скорость теплохода ( скорость в стоячей воде)

 

4,6(1 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ