1) f(x)=1/(sin(x) - 0,5), т.к. функция y = 1/x определена на всем числовом промежутке, кроме x = 0, то и данная функция определена при всех x, кроме sin(x) - 0,5 = 0
sin(x) = 1/2
x = arcsin(1/2) + 2пn => x = п/6 + 2пn
x = п - arcsin(1/2) + 2пn => x = 5п/6 + 2пn
ответ: x ∈ R, x ≠ п/6 + 2пn, 5п/6 + 2пn, n ∈ Z
2)
а) y = 2sin(x ) - 3
Зная, что |sin(x)|≤ 1, то рассмотрим максимальное и минимальное значение функции:
y = 2 - 3 = -1
y = -2 - 3 = - 5
y = 0 - 3 = -3
ответ: y ∈ [-5; - 1]
б)y = 1 - cos(2x) = 1 - (cos^2(x) - sin^2(x)) = 1 - cos^2(x) + sin^2(x) = 2* sin^2(x)
y = 2 * 1^2 = 2
y = 2 * 0 = 0
ответ: y ∈ [0;2]
3)
а) y = x + cos(x), пусть x = -x
y = -x + cos(-x) = - x + cos(x)
- x + cos(x) ≠ x + cos(x) => ф-я нечетная
б) y = 3x^2 * sin x, пусть x = -x
y = 3 * (-x)^2 * sin(-x) = 3x^2 * (-sin(x)) = - 3x^2 * sin(x)
- 3x^2 * sin(x) ≠ 3x^2 * sin x => ф-я нечетная
Объяснение:
ДУМАЕМ Площадь фигуры - интеграл разности функций.
Рисунок к задаче в приложении.
РЕШЕНИЕ
1) Находим точки пересечение = пределы интегрирования.
x² - 4*x + 1 = x + 1 превращается в квадратное уравнение:
x²- 5*x = x*(x - 5) = 0
b= 0 - нижний предел и а = 5 - верхний передел интегрирования.
Находим интеграл разности функций: s = 5*x - x² - прямая выше параболы.
S=
Мне нравится именно такая запись решения интеграла - увеличиваем степень и на неё же и делим.
Вычисляем на границах интегрирования.
S(5) = 62 1/2 - 41 2/3 = 20 5/6, S(0) = 0.
S = S(5) - S(0) = 20 5/6 - площадь фигуры - ОТВЕТ (≈ 20,833)
х ∈ (-∞;1)∪(1;5)
Объяснение:
(x-1)^2 (x-5)<0
на коорд.прямую наносим точки выколотые 5 и 1
справа налево в данных промежутках проставляем поочередно знаки + и -.
Поскольку (x-1)^2, то возле 1 знаки дублируются
х ∈ (-∞;1)∪(1;5)