1. В задании дана функция y = f(x). Вид данной функции f(x) определен дополнительным равенством f(x) = tgx. По требованию задания докажем равенство f(2 * x + 2 * π) + f(7 * π – 2 * x) = 0. По сути говоря, нам необходимо доказать равенство tg(2 * x + 2 * π) + tg(7 * π – 2 * x) = 0, чем и будем заниматься в дальнейшем. 2. Анализ равенства показывает, что в его левой части имеется сумма двух слагаемых, каждый из которых представляет собой значение тангенс функции для различных углов. Первое слагаемое, после применения переместительного свойства сложения к его аргументу, примет вид tg(2 * π + 2 * х), а формула приведения tg(2 * π + α) = tgα позволит его записать как tg(2 * x). 3. Для преобразования второго слагаемого вспомним о периодичности тангенс функции. Как известно, тангенс функция имеет наименьший положительный период, равный π. Следовательно, из аргумента выражения tg(7 * π – 2 * x) можно отбросить 7 * π. Тогда, tg(7 * π – 2 * x) = tg(-2 * x). Наконец, учитывая нечётность тангенс функции, левая часть доказываемого равенства примет вид: tg(2 * x) + tg(–2 * x) = tg(2 * x) - tg(2 * x) = 0. Что и требовалось доказать.
Любое число при сложении с нулём не меняется. Это свойство имеет место и в расширенных числовых системах, включающих целые числа: вещественные числа,комплексные числа и др. При вычитании нуля от любого натурального числа, получается то же натуральное число. Умножение любого числа на нуль даёт нуль. Нуль не имеет знака. Так как при делении 0 на 2 получается целое число, то 0 является чётным числом. 0 делится на все вещественные числа, в результате получается нуль. Исключением является выражение 0/0, приводящее к неопределённости. Деление на ноль невозможно в пространстве комплексных чисел. В самом деле, если обозначить , то по определению деления должно быть , в то время как при любом комплексном b равна нулю. Другими словами, для нуля не существует обратного числа в пространстве комплексных чисел. (Можно искусственно добавить к комплексным числам ещё одно число, которое будет обратным к нулю. Полученное множество будет сферой Римана.)