М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Нezнaйка
Нezнaйка
02.06.2022 11:48 •  Алгебра

Найти производную функций f(x)=(x^{3} -3x+1)^{4} \\\\\\f(x)=\sqrt{5-x^{2} } \\\\\\f(x)=x*tg3x Очень нужно свериться.Решение с онлайн калькуляторов не предлагайте.

👇
Ответ:
fiskevich2
fiskevich2
02.06.2022

\displaystyle\\1)f(x)=(x^3-3x+1)^4\\\\f'(x)=((x^3-3x+1)^4)'*(x^3-3x+1)'=4*(x^3-3x+1)^3*(3x^2-3)\\\\\\2)f(x)=\sqrt{5-x^2}\\\\f'(x)=(\sqrt{5-x^2})'*(5-x^2)'=\frac{1}{2\sqrt{5-x^2}}*(-2x)=\frac{-2x}{2\sqrt{5-x^2}}=\\\\\\=-\frac{x}{\sqrt{5-x^2}} \\\\\\3)f(x)=x*tg(3x)\\\\\\f'(x)=(x)'*tg(3x)+x*(tg(3x))'=tg(3x)+x*3*\frac{1}{\cos^2(3x)}=\\\\\\=tg(3x)+\frac{3x}{\cos^2(3x)}

4,7(13 оценок)
Ответ:
ВанькаНер
ВанькаНер
02.06.2022

1)\ \ f(x)=(x^3-3x+1)^4\\\\\star \ \ (u^4)'=4u^3\cdot u'\ ,\ u=x^3-3x+1\ \ \star \\\\f'(x)=4(x^3-3x+1)^3\cdot (3x^2-3)\\\\\\2)\ \ f(x)=\sqrt{5-x^2}\\\\\star \ \ (\sqrt{u})'=\dfrac{1}{2\sqrt{u}}\cdot u'\ ,\ u=5-x^2\ \ \star \\\\f'(x)=\dfrac{1}{2\sqrt{5-x^2}}\cdot (-2x)=-\dfrac{x}{\sqrt{}5-x^2}

3)\ \ f(x)=x\cdot tg3x\\\\\star\ \ (uv)'=u'v+uv'\ \ ,\ \ (tgu)'=\dfrac{1}{cos^2u}\cdot u'\ \ \star \\\\f'(x)=1\cdot tg3x+x\cdot \dfrac{1}{cos^23x}\cdot 3=tg3x+\dfrac{3x}{cos^23x}

4,6(29 оценок)
Открыть все ответы
Ответ:
nastusa098
nastusa098
02.06.2022
Графики во вложении.
Все функции в условии, являются уравнениями чей график - обычная прямая. Так как они имеют вид:
y=ax+b- a угловой коэффициент,b точка пересечения прямой с осью у.

У каждой прямой b=0, следовательно, данные прямые пересекают ось у в начале координат.
А так же ось х в начале координат. Так как:
0=ax\\x=0

Это прямые, а значит:
D(y)=(-\infty,+\infty) - область определения.
E(y)=(-\infty,+\infty)- область значений.

Теперь, по отдельности строим каждый график:
1. 
y=3x

Здесь a=3 \Rightarrow 3\ \textgreater \ 0, следовательно, данная функция всегда возрастает.
Нуль функции:
y=0 \Rightarrow (0,0)

Знак функции:
f(x) \geq 0 \rightarrow x\in[0,+\infty)
f(x)\ \textless \ 0 \rightarrow x\in (-\infty,0)

2. 
y=-1,5x

Здесь  a=-1,5x \Rightarrow -1,5\ \textless \ 0 следовательно, данная функция всегда убывает.
Нуль функции:
y=0 \Rightarrow (0,0)

Знак функции:
f(x) \geq 0 \rightarrow x\in(-\infty,0]
f(x)\ \textless \ 0 \rightarrow x\in(0,+\infty)

3.
y=x

Здесь a=1 \Rightarrow 1\ \textgreater \ 0, следовательно, данная функция всегда возрастает.
Нуль функции:
y=0 \Rightarrow (0,0)

Знак функции:
f(x) \geq 0 \rightarrow x\in(-\infty,0]
f(x)\ \textless \ 0 \rightarrow x\in(0,+\infty)

4.
y=-x

Здесь  a=-1x \Rightarrow -1\ \textless \ 0 следовательно, данная функция всегда убывает.
Нуль функции:
y=0 \Rightarrow (0,0)

Знак функции:
f(x) \geq 0 \rightarrow x\in(-\infty,0]
f(x)\ \textless \ 0 \rightarrow x\in(0,+\infty)

5.
y=2,5x

Здесь a=2,5\Rightarrow 2,5\ \textgreater \ 0, следовательно, данная функция всегда возрастает.
Нуль функции:
y=0 \Rightarrow (0,0)

Знак функции:
f(x) \geq 0 \rightarrow x\in(-\infty,0]
f(x)\ \textless \ 0 \rightarrow x\in(0,+\infty)

6.
y=-4,5x

Здесь  a=-4,5x \Rightarrow -4,5\ \textless \ 0 следовательно, данная функция всегда убывает.
Нуль функции:
y=0 \Rightarrow (0,0)

Знак функции:
f(x) \geq 0 \rightarrow x\in(-\infty,0]
f(x)\ \textless \ 0 \rightarrow x\in(0,+\infty)

Постройте график прямой пропорциональности, заданной формулой: y=3x y=-1,5x y=x y=-x y=2,5x y=-4,5x
Постройте график прямой пропорциональности, заданной формулой: y=3x y=-1,5x y=x y=-x y=2,5x y=-4,5x
Постройте график прямой пропорциональности, заданной формулой: y=3x y=-1,5x y=x y=-x y=2,5x y=-4,5x
4,8(84 оценок)
Ответ:
nikusakunova
nikusakunova
02.06.2022
Графики во вложении.
Все функции в условии, являются уравнениями чей график - обычная прямая. Так как они имеют вид:
y=ax+b- a угловой коэффициент,b точка пересечения прямой с осью у.

У каждой прямой b=0, следовательно, данные прямые пересекают ось у в начале координат.
А так же ось х в начале координат. Так как:
0=ax\\x=0

Это прямые, а значит:
D(y)=(-\infty,+\infty) - область определения.
E(y)=(-\infty,+\infty)- область значений.

Теперь, по отдельности строим каждый график:
1. 
y=3x

Здесь a=3 \Rightarrow 3\ \textgreater \ 0, следовательно, данная функция всегда возрастает.
Нуль функции:
y=0 \Rightarrow (0,0)

Знак функции:
f(x) \geq 0 \rightarrow x\in[0,+\infty)
f(x)\ \textless \ 0 \rightarrow x\in (-\infty,0)

2. 
y=-1,5x

Здесь  a=-1,5x \Rightarrow -1,5\ \textless \ 0 следовательно, данная функция всегда убывает.
Нуль функции:
y=0 \Rightarrow (0,0)

Знак функции:
f(x) \geq 0 \rightarrow x\in(-\infty,0]
f(x)\ \textless \ 0 \rightarrow x\in(0,+\infty)

3.
y=x

Здесь a=1 \Rightarrow 1\ \textgreater \ 0, следовательно, данная функция всегда возрастает.
Нуль функции:
y=0 \Rightarrow (0,0)

Знак функции:
f(x) \geq 0 \rightarrow x\in(-\infty,0]
f(x)\ \textless \ 0 \rightarrow x\in(0,+\infty)

4.
y=-x

Здесь  a=-1x \Rightarrow -1\ \textless \ 0 следовательно, данная функция всегда убывает.
Нуль функции:
y=0 \Rightarrow (0,0)

Знак функции:
f(x) \geq 0 \rightarrow x\in(-\infty,0]
f(x)\ \textless \ 0 \rightarrow x\in(0,+\infty)

5.
y=2,5x

Здесь a=2,5\Rightarrow 2,5\ \textgreater \ 0, следовательно, данная функция всегда возрастает.
Нуль функции:
y=0 \Rightarrow (0,0)

Знак функции:
f(x) \geq 0 \rightarrow x\in(-\infty,0]
f(x)\ \textless \ 0 \rightarrow x\in(0,+\infty)

6.
y=-4,5x

Здесь  a=-4,5x \Rightarrow -4,5\ \textless \ 0 следовательно, данная функция всегда убывает.
Нуль функции:
y=0 \Rightarrow (0,0)

Знак функции:
f(x) \geq 0 \rightarrow x\in(-\infty,0]
f(x)\ \textless \ 0 \rightarrow x\in(0,+\infty)

Постройте график прямой пропорциональности, заданной формулой: y=3x y=-1,5x y=x y=-x y=2,5x y=-4,5x
Постройте график прямой пропорциональности, заданной формулой: y=3x y=-1,5x y=x y=-x y=2,5x y=-4,5x
Постройте график прямой пропорциональности, заданной формулой: y=3x y=-1,5x y=x y=-x y=2,5x y=-4,5x
4,6(97 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ