Пусть х руб. - цена детского билета, у руб. - цена взрослого билета. Составим систему уравнений по условию задачи:
{2х + у = 315
{3х + 2у = 565
- - - - - - - - - - - -
Вычтем из второго уравнения первое:
(3х - 2х) + (2у - у) = 565 - 315
х + у = 250
у = 250 - х
- - - - - - - - - - - -
Подставим значение у в любое уравнение системы
2х + 250 - х = 315 3х + 2 · (250 - х) = 565
2х - х = 315 - 250 3х + 500 - 2х = 565
х = 65 3х - 2х = 565 - 500
х = 65
- - - - - - - - - - - -
у = 250 - 65
у = 185
ответ: детский билет стоит 65 рублей,
а взрослый билет стоит 185 рублей.
Проверка:
2 · 65 + 1 · 185 = 130 + 185 = 315 руб. - заплатила первая семья
3 · 65 + 2 · 185 = 195 + 370 = 565 руб. - заплатила вторая семья
(1+4x-x²)-20/(4x-x²)>0
((1+4x-x²)(4x-x²)-20)/(x(4-x))>0
(4x+16x²-4x³-x²-4x³+x⁴-20)/(x(4-x))>0
(x⁴-8x³+15x²+4x-20)/(x(4-x)>0
x⁴-8x³+15x²+4x-20=0
x₁=2
x⁴-8x³+15x²+4x-20 I_x-2_
x⁴-2x³ I x³-6x²+3x+10
-6x³+15x²
-6x³+12x²
3x²+4x
3x²-6x
10x-20
10x-20
0
x³-6x²+3x+10=0
x₂=2
x³-6x²+3x+10 I_x-2_
x³-2x² I x²-4x-5
-4x²+3x
-4x²+8x
-5x+10
-5x+10
0
x²-4x-5=0 D=36
x₃=-1 x₄=5. ⇒
(x-2)²(x+1)(x-5)/(x(4-x)>0
-∞--1+0__-__2__-__4+5-+∞
x∈(-1;0)U(4;5).
∑дл. инт.=(0-(-1))+(5-4)=1+1=2.
ответ: ∑дл. инт.=2.