М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
saha174zxcvb
saha174zxcvb
09.04.2021 10:53 •  Алгебра

Найти область определения функции


y = \frac{32 - 8x}{x + 1}

👇
Ответ:
bobmarli436
bobmarli436
09.04.2021

Приравняем знаменатель к 0

, чтобы выяснить, где не определено данное выражение.

x+1=0

Вычтем 1 из обеих частей уравнения. x=−1

Областью определения являются все значения

x

, которые делают выражение определенным.

Запись в виде интервала:

(−∞,−1)∪(−1,∞)

4,4(40 оценок)
Ответ:
lilo2622
lilo2622
09.04.2021

Объяснение:

Знаменатель не должен быть равен нулю!

x+1 не равен нулю

x не равен -1

x принадлежит: (-Б;-1) и (-1;+Б)

Б - бесконечность.

4,4(54 оценок)
Открыть все ответы
Ответ:
wylia
wylia
09.04.2021

1) Точки пересечения с осями.
 - с осью Оу: х = 0, у =0^3+0^2-16*0-16 = -16, точка (0; -16).
 - с осью Ох: у = 0.
   x^3+x^2-16x-16 = 0.
   Преобразуем заданное уравнение: 
   у =x^3+x^2-16x-16 = х²(х+1)-16(х+1) = (х²-16)(х+1) = (х-4)(х+4)(х+1).
   у = 0,  (х-4)(х+4)(х+1) = 0.
   Отсюда получаем 3 корня уравнения: х₁ = 4, х = -4, х = -1.

2) Для того, чтобы найти экстремумы, нужно найти производную и  приравнять её нулю и корни этого уравнения будут экстремумами данной функции:
y' = 3x² + 2 x - 16 = 0.

Квадратное уравнение, решаем относительно x: 

Ищем дискриминант:

D=2^2-4*3*(-16)=4-4*3*(-16)=4-12*(-16)=4-(-12*16)=4-(-192)=4+192=196;

Дискриминант больше 0, уравнение имеет 2 корня:

x₁=(√196-2)/(2*3)=(14-2)/(2*3)=12/(2*3)=12/6=2;  

x₂=(-√196-2)/(2*3)=(-14-2)/(2*3)=-16/(2*3)=-16/6=-(8/3) ≈ -2,6667.

Значит, экстремумы в точках:
((-8/3); (400/27)),
(2, -36).

3) Определяем минимумы и максимумы функции и промежутки знакопостоянства.
Для этого находим значения производной вблизи критических точек.
х =    -3    -2.667    -2      1      2      3 
у' =    5        0        -8     -11    0     17.

Где производная меняет знак с + на - там максимум функции ((х=(-8/3); у= (400/27)), а где меняет знак с - на + там минимум функции (х=2; у=-36)).

Функция возрастает на промежутках -∞ < x < (-8/3) и 2 < x < +∞,

а убывает на промежутке (-8/3) < x < 2.


4) Найдем точки перегибов, для этого надо решить уравнение

y'' = 0 (вторая производная равняется нулю), корни полученного уравнения будут точками перегибов для указанного графика функции,
y'' = 6x+2 = 2(3x+1) = 0.
3 x + 1 = 0.
Отсюда х = (-1/3).

Интервалы выпуклости и вогнутости:
Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов.
Если на интервале вторая производная больше 0 , то функция имеет вогнутость на этом интервале, если вторая производная меньше 0, то функция имеет выпуклость.
x =    -2    -1    -0.33333     0       1
y'' = -10    -4         0           2       8
Вогнутая на промежутках [-1/3, oo),
Выпуклая на промежутках (-oo, -1/3].

 


4,6(1 оценок)
Ответ:
ser2003123
ser2003123
09.04.2021
Например, 154 = 11*14
Сумма квадратов 1 + 25 + 16 = 42 - делится на 3, но не делится на 9.
Или 847 = 11*77
8^2 + 4^2 + 7^2 = 64 + 16 + 49 = 129 - делится на 3, но не делится на 9.
Нашел простым подбором, это было нетрудно.
А вот найти все решения через решение уравнений - трудно.
Если число 100a + 10b + c, то должна выполняться одна из систем:
{ a + c = b
{ a^2 + b^2 + c^2 = 9k + 3
ИЛИ
{ a + c = b
{ a^2 + b^2 + c^2 = 9k + 6
ИЛИ
{ a + c = 11 + b
{ a^2 + b^2 + c^2 = 9k + 3
ИЛИ
{ a + c = 11 + b
{ a^2 + b^2 + c^2 = 9k + 6
4,6(66 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ