М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Redll
Redll
17.07.2020 04:24 •  Алгебра

Вычислить производную функции в некоторой точке x0. f(x)=x^(-3) , в точке x0=3 f(x)=x^3-4x+2 , в точке x0=-1 f(x)=√(3-2x) , в точке x0=-11 f(x)=x^2/(x+2) , в точке x0=-5

👇
Ответ:
andrew2324
andrew2324
17.07.2020

Объяснение:

1)f'(x)=-3*x^-4,  f'(3)=-3*3^-4=-3^-3 =-1/27

2) f'(x)=3x^2-4,  f'(-1)=3*1-4=-1

3) f'(x)=1 /2V(3-2x) *(3-2x)'=1 /2*V(3-2x) *(-2)=- 1  /V(3-2x),  (V-корень)

f'(-11)= -1 /V(3+22)= -1 /5

4) (u/v)'=(u'v-uv')/ v^2

f'(x)=(2x*(x+2)-x^2*1)/ (x+2)^2=(2x^2+4x-x^2)/ (x+2)^2=(x^2+4x)/ (x+2)^2 ,

f'(-5)=(25-20)/ (-3)^2=5/9

4,4(24 оценок)
Открыть все ответы
Ответ:
Gtfdgrrgd
Gtfdgrrgd
17.07.2020
2x²-4х+b=0
Это решается по дискриминанту 
вот формула D = b² - 4ac
где а - это то число где x²
где b - это то  число где x
где c - это то  число где нет x
Подставляем значения под формулу
D = 4² - 4 * 2 * b = 16 - 8b = 8b
дальше находим x1 и x2
по формуле 
х1= -b + квадратный корень из дискриминанта
                                  делим на 2а 
х2= -b - квадратный корень из дискриминанта
                                  делим на 2а 
Так же :
если дискриминант отрицательный то корней нет
если дискриминант равен нулю то корень только один
если дискриминант больше нуля то уравнение имеет два корня 
4,4(54 оценок)
Ответ:
monika258
monika258
17.07.2020
Натуральные числа разбиваются на два непересекающихся множества вида 2m и 2m+1, где m - натуральное.
а) (2m)^2 + 2m + 1 = 4m^2 + 2m + 1 = 2(2m^2+m) + 1, где 2m^2+m натуральное (в силу того, что произведение и сумма натуральных числе всегда натуральна), будет нечётным.
(2m+1)^2 + (2m+1) + 1 = 4m^2 + 4m + 1 + 2m + 1 + 1 = 4m^2 + 6m + 2 + 1 =
2(2m^2 + 3m + 1) + 1, где 2m^2 + 3m + 1 натуральное, будет нечётным.

b) Квадрат чётного числа - чётный. Потому число n^2 + n + 1 не может быть квадратом чётного числа.
Покажем, что число не может быть и квадратом нечётного числа:
n^2 + n + 1 = n^2 + 2n + 1 - n = (n+1)^2 - n
Т.е. число n^2 + n + 1 отличается от квадрата (n + 1)^2 на n единиц. Может ли такое число быть квадратом?
(n + 1)^2 - n^2 = n^2 + 2n + 1 - n^2 = 2n + 1 > n
Не может.

Цельная и стройная запись решения:
n^2 < n^2 + n + 1 = (n + 1)^2 - n < (n + 1)^2
Т.к. число n^2 + n + 1 лежит между двумя квадратами последовательных натуральных чисел, само оно не может быть квадратом натурального числа.
4,4(100 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ