Для анализа массовых количественных данных используют статистические исследования. Каждое исследование основано на сборе информации и её обработке. Рассмотрим пример: даны оценки, полученные учеником 7 класса: 3 3 4 5 5 5 2 3 4. Ряд данных, полученных в результате статистического исследования, называется выборкой, а каждое число ряда - вариантой. Кол-во чисел - объём выборки.Среднее арифметическое ряда это частное суммы вариант и объёма выборки.Упорядоченный(вариационный) ряд данных это запись выборки, где каждая последующая варианта не меньше предыдущей. Количество появлений варианты в выборке называют частотой варианты. Разность наибольшей и наименьшей вариант - размах выборки. Варианта с наибольшей частотой - мода выборки. Если встречаются 2 варианты(или больше)с одинаковой частотой(наибольшей), то обе они - моды. Если у всех вариант одинаковая частота, то моды нет. Медиана - варианта, стоящая посредине упорядоченного по возрастанию ряда чисел. Если объём выборки - чётное число, то медиана - среднее арифметическое 2-х средних вариант.Таким образом, в примере: вариационный ряд: 2 3 3 3 4 4 5 5 5;объём: 9;среднее арифметическое:≈3.8;частота варианты 4:2;размах:3;моды:3 и 5; медиана:4.
=(a + b - a + b)(a² + 2ab + b²- a² + b² + a² - 2ab + b²) =2b(a² + 3b²).
(применили формулу разности кубов)
2) (2x+y)^3+(x-2y)^3 = (2х + у + х - 2у)((2х +у)² -(2х +у)(х - 2у)+(х - 2у)²)=
=(3х -у)(4х² + 4ху +у² - 2х²-ху +4ху+2у² + х² - 4ху +4у²) =
= (3х -у)(3х²+3ху +7у²)
(применили формулу суммы кубов)
3) (2mn-1)^3+1 =(2mn -1 +1)(4m²n² -4mn +1 - 2mn +1 +1)=
=2mn(4m²n² -6mn +3)
(применили формулу суммы кубов)
4) (3a-2b)^3+8b^3 = (3a -2b +2b)(9a² -12ab +4b² -6ab +4b² + 4b²)=
=3a(9a²-18ab + 12b²)
( сумма кубов)