М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ROMMIT2
ROMMIT2
01.08.2020 14:40 •  Алгебра

Исследовать функцию методами дифференциального исчисления и построить ее график. (Прикреплен пример)


Исследовать функцию методами дифференциального исчисления и построить ее график. (Прикреплен пример
Исследовать функцию методами дифференциального исчисления и построить ее график. (Прикреплен пример
Исследовать функцию методами дифференциального исчисления и построить ее график. (Прикреплен пример
Исследовать функцию методами дифференциального исчисления и построить ее график. (Прикреплен пример
Исследовать функцию методами дифференциального исчисления и построить ее график. (Прикреплен пример

👇
Ответ:
boginyanatasha
boginyanatasha
01.08.2020

Объяснение:

График и исследование по вложении


Исследовать функцию методами дифференциального исчисления и построить ее график. (Прикреплен пример)
Исследовать функцию методами дифференциального исчисления и построить ее график. (Прикреплен пример)
Исследовать функцию методами дифференциального исчисления и построить ее график. (Прикреплен пример)
4,4(4 оценок)
Открыть все ответы
Ответ:
taniamishanina
taniamishanina
01.08.2020
Y=x⁴-8x²
1) Находим область определения функции:
  D(y)=R   Данная функция непрерывна на R
2) Находим производную функции:
  y`(x)=4x³-16x=4x(x²-4)=4x(x-2)(x+2)
3) Находим критические точки:
  D(y`)=R    y`(x)=0
  4x(x-2)(x+2)=0
   x=0  или  х=2  или х=-2
4) Находим знак производной и характер поведения функции:
            -                         +                        -                         +
   -202
             ↓         min         ↑        max           ↓          min          ↑

у(х) - убывает на х∈(-∞;-2)U(0;2)
у(х) - возрастает на (-2;0)U(2;+∞)
х=-2 и х=2  - точки минимума функции
х=0 - точка максимума функции
-2; 0; 2- точки экстремума функции
у(-2)=(-2)⁴-8*(-2)²=16-8*4=16-32=-16
у(2)=2⁴-8*2²=16-8*4=16-32=-16
у(0)=0⁴-8*0²=0-0=0
ответ: Функция монотонно возрастает на (-2;0)U(2:+∞) и монотонно убывает на (-∞;-2)U(0;2), x(min)=(+-)2, y(min)=-16, x(max)=0, y(max)=0
            

  
4,8(86 оценок)
Ответ:
emilylund829
emilylund829
01.08.2020

0,5+m

Объяснение:

Для того, чтобы найти требуемое значение логарифма log49(28), которого обозначим через L, воспользуемся следующей формулой loga(b / с) = logab / logaс (где а > 0, a ≠ 1, b > 0, c > 0), которая называется формулой перехода к новому основанию.

В нашем примере новым основанием будет число 7, так как дано log7(2) = m. Итак, имеем L = log7(28) / log7(49). Поскольку 28 = 7 * 22 и 49 = 72, то используя следующие формулы, преобразуем полученное выражение: loga(b * с) = logab + logaс (где а > 0, a ≠ 1, b > 0, c > 0) и logabn = n * logab (где а > 0, a ≠ 1, b > 0, n – любое число). Получим: L = log7(7 * 22) / log7(72) = (log7(7) + log7(22)) / log7(72) = (log7(7) + 2 * log7(2)) / (2 * log7(7)).

Очевидно, что log7(7) = 1. Тогда, имеем: L = (1 + 2 * m) / (2 * 1) = 1 : 2 + 2 * m : 2 = 0,5 + m.

4,7(50 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ