Сначала выразим tg(3a) через tg(a) Получили Мы знаем, что tg(a) - целое. Если tg(3a) тоже целое, то 3-tg^2(a) делится нацело на 1-3tg^2(a).
Ясно, что при tg a = 0 будет tg 3a = 0 Далее, например, при tg(a) = 1 получаем tg(3a) = 1*(3 - 1)/(1 - 3)= 1*2/(-2) = -1 А при tg(a) = -1 получаем tg(3a) = -1*(3 - 1)/(1 - 3) = (-1)*2/(-2) = 1 Но уже при tg(a) = 2 мы получаем tg(3a) = 2*(3 - 4)/(1 - 3*4) = 2*(-1)/(-11) = 2/11 Соответственно, при tg(a) = -2 мы получим tg(3a) = -2/11. Это уже нецелые значения, и ни при каких других а целых не будет. ответ: (0; 0); (1; -1); (-1; 1)
1)Функция определена при тех х, при которых не обращается в 0 знаменатель. Решая уравнение arcsin(x²-3)=0, находим x²-3=0. Решая уравнение x²-3=0, находим x=+-√3. С другой стороны, должно выполняться неравенство -1≤x²-3≤1, или 2≤x²≤4, откуда √2≤x≤2. либо -2≤x≤-√2. Окончательно находим, что область определения состоит из четырёх интервалов: -2≤x<-√3, -√3<x≤-√2, √2≤x<√3,√3<x≤2 2. Так как числитель дроби есть 1, то в нуль функция не обращается. А так как знаменатель дроби принимает любые значения, то область значений функции есть два интервала: -∞<G(x)<0 и 0<G(x)<+∞ То есть функция принимает любые значения, кроме 0.
Удачіііі!