М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Maксим56
Maксим56
08.09.2021 08:36 •  Алгебра

Какое решение имеет уравнение (a2−16)x=a+4 , если a≠±4 ? Выбратьодно из: 1. x=4a
2. x=1a−4
3. x=16a−4
4. x=1a
5. x=1a+4

👇
Ответ:
yliya302
yliya302
08.09.2021

(a^2−16)*x=a+4

x=\frac{a+4}{a^{2}-16 }x=\frac{a+4}{(a+4)(a-4)}Так как a≠±4 , то можно сократить x= \frac{1}{a-4}ответ : 2
4,8(87 оценок)
Ответ:
Ulyana2006mizik5B
Ulyana2006mizik5B
08.09.2021

(a^{2} -16)x = a+4 :( a^{2} -16)\\x = \frac{a+4}{(a+4)(a-4)} = \frac{1}{a-4}, если a ≠ ± 4, то мы можем спокойно обе части уравнения поделить на (a^2 - 16)

ответ : 1/a-4

4,4(88 оценок)
Открыть все ответы
Ответ:
Lolkek3332
Lolkek3332
08.09.2021
1) Не совсем понятно cosx умножается на всю дробь или только на икс.
В первом случае будет ноль, т.к. синус и косинус функции периодические, их произведение изменяется не более, чем от плюс до минус единицы. А Всё делится на бесконечность. Второй случай сложнее, периодически встречаются бесконечные разрывы, тогда предел будет плюс или минус бесконечность.

2) \lim_{x \to \infty} (1+ \frac{5}{x} ) ^{x}
Сделаем замену t=5/x, тогда t→0 и x=5/t
\lim_{t \to \inft0} (1+t) ^{ \frac{5}{t} } = \lim_{t \to \inft0} ((1+t) ^{ \frac{1}{t}}) ^{5} =( \lim_{t \to \inft0} (1+t) ^{ \frac{1}{t} } ) ^{5} = e^{5}
Использован второй замечательный предел: \lim_{t \to \inft0} (1+t) ^{ \frac{1}{t} } =e

3) \lim_{x \to \infty} ( \frac{x+2}{x}) ^{2x} =\lim_{x \to \infty} (1+ \frac{2}{x} ) ^{2x}
Сделаем замену t=2/x, тогда t→0 и x=2/t
\lim_{t \to \inft0} (1+t) ^{ 2*\frac{2}{t} } =(\lim_{t \to \inft0} (1+t) ^{ \frac{1}{t} } ) ^{4} = e^{4}

4) \lim_{x \to \infty} (1+ \frac{2}{3x} ) ^{3x}
Сделаем замену t=2/(3x), тогда t→0 и x=2/(3t)
\lim_{t \to \inft0} (1+ t} ) ^{3 \frac{2}{3t}} =\lim_{t \to \inft0} (1+ t} ) ^{ \frac{2}{t}}=(\lim_{t \to \inft0} (1+ t} ) ^{ \frac{1}{t}}) ^{2} = e^{2}

Т.о. везде делаются преобразования, чтобы использовать второй замечательный предел.
4,4(99 оценок)
Ответ:
Liphan
Liphan
08.09.2021
Пусть у нас будет ромб ABCD. По условию AB = 10 cm, а BD (диагональ) = 12 см. O - центр пересечения диагоналей.
1) Рассмотрим ромб АВСD. У него BD и АС - пересекающиеся диагонали. У ромба диагонали пересекаются под прямым углом, и точкой пересечения делиться пополам, значит ВO = 1/2 BD = 12 * 1/2 = 6 *(сm).
2) Рассмотрим треугольник АОВ. Он прямоугольный (угол О = 90 град.), значит по теореме Пифагора:
АО^2 + BO^2 = AB^2
AO^2 + 6^2 = 10^2
AO^2 = 100 - 36
AO^2 = 64
AO = корень из 64
AO(маленькая 1 снизу) = 8 (см), АО(маленькая 2 снизу) = -8 - не удовлетворяет условие задачи.
3) S (ABCD) = 1/2*AO*BO
    S (ABCD) = 1/2 * 8 * 6
     S (ABCD) = 1/2 * 48 
     S (ABCD) = 24 см^2

ответ: 24 см^2
4,5(85 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ