1) а) F'(x)=3*x^2+8*x-5+0 Так как (x^3)'=3*x^2, (x^2)'=2*x, (x)'=1, (C)'=0, то F'(x)=f(x) б) F'(x)=3*4*x^3-1/x=12*x^3-1/x Так как (x^4)'=4*x^3, (ln x)'=1/x, то F'(x)=f(x) 2) a) F(x)=-x^(-2)+sin x, (x^(-2))'=-2*x^(-2-1)=-2*x^-3=-2/x^3, (sin x)'=cos x и f(x)=2/x^3+cos x След. F'(x)=f(x) б) F(x)=3*e^x Так как (3*e^x)'=3*(e^x)'=3*e^x и f(x)=3*e^x, то F'(x)=f(x) 3) F(x)=x^3+2x^2+C, т. к. (x^3)'=3x^2 (2x^2)'=2*2x=4x C'=0 1. f(x)=3x^2+4x След. , F'(x)=f(x) 2. Т. к. график первообразной проходит через A(1;5), то 5=1^3+2*1+C - верное равенство 5=3+С С=2 ответ: F(x)=x^3+2x^2+2 4) у=x^2 у=9 x^2=9 х1=-3 х2=3 Границы интегрирования: -3 и 3 Чертим на коорд. пл. графики функ. у=x^2 и у=9, опускаем проекции из точек пересеч. графиков на ось х Полученный прямоугольник обозначаем как ABCD, площадь которого равна 9*(3+3)=54 S (OCD)= ∫ от 0 до 3 x^2 dx = 1/3*3^3-1/3*0=9 Т. к. S (ABO) = S (OCD), то S(иск) =54-2*9=36 В пятом условии для решения не хватает функции, график которой бы "замыкал" указанные параболы на коор. плоскости.
В решении.
Объяснение:
Функция задана формулой у=½х(одна вторая икс)+4
А) найдите значение функции, если значение аргумента равно -8
Б) найдите значение аргумента при котором значение функции равно -0,5
В) проходит ли график этой функции через точку А(4;7)?
Дана функция у = х/2 + 4
а) х = -8; у = ?
у = -8/2 + 4
у = -4 + 4
у = 0;
При х = -8 у = 0.
б) у = -0,5; х = ?
-0,5 = х/2 + 4
Умножить уравнение на 2, чтобы избавиться от дроби:
-1 = х + 8
-1 - 8 = х
х = -9;
При х = -9 у = -0,5.
в) у = х/2 + 4; А(4; 7);
7 = 4/2 + 4
7 ≠ 6, не проходит.