1) Чтобы значение квадратного корня было натуральным числом, подкоренное выражение должно быть полным квадратом, при этом n должно быть наименьшим (по условию).
169=13²
12²=144 - ближайший к 169 квадрат числа, значит n=169-144=25
ответ: n=25
2) Чтобы значение квадратного корня было натуральным числом, подкоренное выражение должно быть полным квадратом, при этом n должно быть наибольшим (по условию).
121=11²
1²=1 - наименьшее возможное значение покоренного выражения, значит n=121-1=120
ответ: n=120
1)
Число сочетаний с повторениями из m=2 элементов по n=3
(n+m-1!/(m-1)!n!=(3+2-1!/(2-1)!3!=4!/1!3!=4
такие (перестановки не играют роли, а только сочетание количества элементов)
3 орла
2 орла, 1 решка
1 орел, 2 решки
3 решки
Условию задачи удовлетворяют 2 (первые) варианта из 4
вероятность=2/4=1/2
вероятность того,что орлов выпало больше чем решек = 1/2 = 0,5
2)
Если формул не помните, то просто рассмотрите все варианты выпадения орла и решки:
ооо
оор
оро
орр
роо
рор
рро
ррр
получаются 4 нужных варианта из 8 возможных
вероятность=4/8=1/2=0,5
2,7
Как решать я расписала на фото)