1,08 часа
Объяснение:
Сначала переведем время в часы:
4ч30м=270м:60м=27/6=9/2ч или 4 1/2ч=4,5ч
6ч45м=405м:60м=27/4ч или 6 3/4ч
Производительность 1-го крана (за единицу возьмем объем бассейна):
1/(9/2)=2/9м^3/ч
Производительность 2-го крана:
1/(27/4)=4/27м^3/ч
Время заполнения бассейна двумя кранами:
1/(2/9 +4/27)=1/((6+4)/27)=27/10ч или 2,7ч
Часть бассейна, заполненного водой 1-м краном:
2/9 *27/10=54/90=3/5=0,6м^3
Часть бассейна, незаполненного водой:
1 -0,6=0,4м^3 или 4/10=2/5м^3
Время заполнения бассейна после открытия 2-го крана:
(2/5)/(2/9 +4/27)=2/5 *27/10=27/25=1,08ч
Для того, чтобы назвать модель математической, необходимо наличие трех вещей:
1) Ввести переменные
2) задать область, на которой будет рассмотрена задача
3) составить функцию цели. т.е. определить, как решать поставленную условием задачу.
Переменные берем из вопроса. Что надо найти? скорость каждого автомобиля. Поэтому введем переменные v₁ и v₂ - скорости первого и второго автомобилей соответственно.
Обе переменные больше нуля.
Расстояние можно найти, если знаем время и скорость. кратко запишем условие с таблицы.
s v t
1 автомобиль 180км ?v₁ 1ч.36мн=1 .6ч/после встречи/
2 автомобиль 180км ?v₂ 2ч 30 мин.=2.5ч/после встречи/
Расстояние Время
До встречи После встречи скорость до после
1 х 180-х v₁ одинак. 1.6
2 180-х х v₂ одинак. 2.5
Пусть первый до встречи проехал х км, тогда второй (180-х) км.
До встречи затратили одно и то же время, т.к. вышли одновременно.
х/v₁=(180-х)/ v₂
v₁1.6+ v₂*2.5=180
Составлена система двух уравнений с двумя переменными. Собственно цель - найти переменные - значения скоростей. После решения системы выполнить отбор полученных решений и записать ответ.