Допустим в банк вложили Х рублей под 10% годовых .Через год насчету станет 1,1x руб. Если бы Пётр ничего не снимал со счёта, то через год там оказалось бы 1,1²x руб, а спустя три года оказалось бы 1,1³x руб . Но так как он снял через год n рублей , то на счету стала сумма 1,1x - n , ещё через год (1,1x - n) * 1,1. Через год Пётр снова кладёт на счёт 100 000 рублей и на счёте оказывается сумма (1,1x - n) * 1,1 + 100 000 . Через три года на счету [(1,1x - n) * 1,1 + 100 000] * 1,1 = 1,1³x - n * 1,1² + 100 000 * 1,1 = = 1,1³x - n * 1,1² +110 000 Сумма 1,1³x больше суммы 1,1³x - n * 1,1² + 110 000 на 4950 1,1³x - 11³ x + n * 1,1² - 110 000 = 4950 n * 1,1² = 114 950 n = 95 000 Пётр снял 95 000 рублей
ответ. В каждом размере либо левых и правых поровну, либо каких-то больше. Если левых и правых поровну, то их по 50 – вот мы и нашли 50 годных пар. Пусть в каждом размере или левых или правых больше. Можно считать, что в двух размерах больше левых, а в еще одном больше правых. (Во всех трех размерах левых быть больше не может, так как всего левых и правых сапог поровну). Введем обозначения, пусть в первых двух размерах правых A и B, а левых тогда 100-A и 100-B. В третьем размере левых C, а правых 100-С. Так как в первых двух размерах правых меньше, то там можно найти соответственно A и B пар, а в третьем размере левых меньше, значит там C годных пар. Мы еще не воспользовались условием, что всего 150 правых сапог. Это условие означает, что A+B+(100-C)=150, Откуда A+B=50+C50. Значит, всего пар годных сапог будет A+B+CA+B50.
Через три года на счету
[(1,1x - n) * 1,1 + 100 000] * 1,1 = 1,1³x - n * 1,1² + 100 000 * 1,1 =
= 1,1³x - n * 1,1² +110 000
Сумма 1,1³x больше суммы 1,1³x - n * 1,1² + 110 000 на 4950
1,1³x - 11³ x + n * 1,1² - 110 000 = 4950
n * 1,1² = 114 950
n = 95 000
Пётр снял 95 000 рублей