Повторение. Решение системы линейных уравнений с двумя переменными Не выполняя пересчета, найди координаты точки рассмотрения графиков соотношений: 6x -25 y = 1 и 5х -16у знак равно -4. Икс знак равно- у знак равно-
Число считается чётным, если чётна его последняя цифра. Имеем ряд цифр 0, 2, 3, 4, 5. Среди них чётны три цифры: 0, 2 и 4.
Начинаем расставлять цифры в четырёхзначном числе * * * * 1) Варианты расположения цифр без повторений: "Закрепляем" ноль на месте единиц - единственный вариант. На место десятков можно поставить любую из оставшихся четырёх цифр, на место сотен - любую из оставшихся трёх, на место тысяч - любую из оставшихся двух. Получаем: 2*3*4*1=24 (числа с нулём на месте единиц)
Далее, "закрепляем" двойку на месте единиц, на место десятков можно поставить любую из оставшихся четырёх цифр, на место сотен - любую из оставшихся трёх, на место тысяч - только одно число - ноль нельзя. Получаем: 1*3*4*1=12 (чисел с двойкой на месте единиц)
Если "закрепить" четвёрку на месте единиц, получим результат, аналогичный предыдущему, т.е. 1*3*4*1=12 (см. рассуждения с двойкой)
Все полученные результаты складываем и даём ответ: 24+12+12=48 чётных чисел можно составить всего (без повторений цифр)
2) Варианты расположения цифр с повторениями: Ноль на месте единиц: 4*5*5*1 =100 вариантов Двойка на месте единиц: 4*5*5*1=100 вариантов Четвёрка на месте единиц: 4*5*5*1=100 вариантов Складываем результаты: 100+100+100=300 чётных чисел с повторениями цифр
Краткая запись решения: 1) Без повторений цифр: 2*3*4*1+1*3*4*1+1*3*4*1=24+12+12=48 2) С повторениями цифр: (4*5*5*1)*3=100*3=300
Число считается чётным, если чётна его последняя цифра. Имеем ряд цифр 0, 2, 3, 4, 5. Среди них чётны три цифры: 0, 2 и 4.
Начинаем расставлять цифры в четырёхзначном числе * * * * 1) Варианты расположения цифр без повторений: "Закрепляем" ноль на месте единиц - единственный вариант. На место десятков можно поставить любую из оставшихся четырёх цифр, на место сотен - любую из оставшихся трёх, на место тысяч - любую из оставшихся двух. Получаем: 2*3*4*1=24 (числа с нулём на месте единиц)
Далее, "закрепляем" двойку на месте единиц, на место десятков можно поставить любую из оставшихся четырёх цифр, на место сотен - любую из оставшихся трёх, на место тысяч - только одно число - ноль нельзя. Получаем: 1*3*4*1=12 (чисел с двойкой на месте единиц)
Если "закрепить" четвёрку на месте единиц, получим результат, аналогичный предыдущему, т.е. 1*3*4*1=12 (см. рассуждения с двойкой)
Все полученные результаты складываем и даём ответ: 24+12+12=48 чётных чисел можно составить всего (без повторений цифр)
2) Варианты расположения цифр с повторениями: Ноль на месте единиц: 4*5*5*1 =100 вариантов Двойка на месте единиц: 4*5*5*1=100 вариантов Четвёрка на месте единиц: 4*5*5*1=100 вариантов Складываем результаты: 100+100+100=300 чётных чисел с повторениями цифр
Краткая запись решения: 1) Без повторений цифр: 2*3*4*1+1*3*4*1+1*3*4*1=24+12+12=48 2) С повторениями цифр: (4*5*5*1)*3=100*3=300
Координаты точки пересечения графиков функций (-4; -1).
Решение системы уравнений (-4; -1).
Объяснение:
Не выполняя построения, найти координаты точки пересечения графиков функций:
6x -25y =1 и 5х -16у = -4.
Выразить у через х в том и другом уравнениях:
-25у=1-6х
25у=6х-1
у=(6х-1)/25 уравнение первой функции.
-16у= -4-5х
16у=5х+4
у=(5х+4)/16 уравнение второй функции.
Приравнять правые части уравнений, так как левые равны:
(6х-1)/25=(5х+4)/16
Умножить уравнение на 400, чтобы избавиться от дроби:
16(6х-1)=25(5х+4)
96х-16=125х+100
96х-125х=100+16
-29х=116
х=116/-29
х= -4;
Подставить вычисленное значение х в любое из двух уравнений системы и вычислить у:
16у=5х+4
16у=5*(-4)+4
16у=(-20)+4
16у= -16
у= -16/16
у= -1.
Координаты точки пересечения графиков функций (-4; -1).
Решение системы уравнений (-4; -1).