короче, так как скорость в стоячей воде 20км/ч, следовательно время за которое он км по течению реки будет, расстояние (18км) делённое на скорость 20км/ч плюс x(скорость движения реки) по аналогии время движения против течения, 20км/(20-x), суммируем два времени и получаем сумму, далее решаем уравнение, и находим корни
А)364-100% x-18% x=364×18÷100=65,52 Обазначим первую часть бруска через x, тогда вторая часть будет выглядеть так: x+65,52 Уравнение будет иметь вид: x+x+65,52=364 2x=364-65,52 2x=298,48 x=149,24-Длина первой части 149,24+65,52=214,76-Длина второй части б) Пусть сторона квадрата будет равна 10см. Тогда Периметр будет равен 40см, а Площадь 100см^2. Если Периметр увеличить на 10%: 40-100% x-110% x=44см-Периметр после увеличение на 10% Тогда сторона будет равна 11см. И соответственно Площадь будет равна 121см^2, то есть Площадь увеличится на 21%
Думаю, что нет скобок на месте. Неравенство скорее всего выглядит так: (x^2-6x)/5+5/(x^2-6x+10)>=0 Делаем замену: x^2-6x=t⇒t/5+5/(t+10)>=0 5*(t+10) - общий знаменатель. После приведения к общему знаменателю дробь выглядит так: (t*(t+10)+25)/(5*(t+10))>=0; умножаем обе части на 5⇒ (t^2+10t+25)/(t+10)>=0⇒((t+5)^2)/(t+10)>=0⇒(t+5)^2*(t+10)>=0 и t≠-10 Равенство нулю достигается при t=-5 и t=-10 Эти значения разбивают числовую ось на 3 интервала: (-беск; -10); (-10;-5]; (-5;+беск) По методу интервалов в крайнем справа будет +. -5 корень четной кратности⇒в интервале (-10; -5] тоже будет + В крайнем слева будет -. Решением неравенства является интервал (-10; +беск), т.е. t>-10 Этот же результат можно получить еще проще. Дробь положительна, если числитель и знаменатель имеют одинаковые знаки. Видим, что числитель >=0 для всех t, значит и знаменатель должен быть >0, т.е. t>-10 Возвращаемся к переменной x. x^2-6x>-10⇒x^2-6x+10>0 график - парабола, ветви направлены вверх D=b^2-4ac=36-40<0⇒неравенство верно для всех x Так как неравенство нестрогое,то находим решение уравнения x^2-6x=-5⇒x^2-6x+5=0⇒x1=5; x2=1
ответ 1,75
Объяснение:
короче, так как скорость в стоячей воде 20км/ч, следовательно время за которое он км по течению реки будет, расстояние (18км) делённое на скорость 20км/ч плюс x(скорость движения реки) по аналогии время движения против течения, 20км/(20-x), суммируем два времени и получаем сумму, далее решаем уравнение, и находим корни