ответ: В 10 классе 8 олимпиад
Объяснение:
С 7 по 11 - это 5 классов. 31:5 =6 и 1 в остатке. Т.е. в среднем, в год 6 олимпиад. Следовательно в 7 классе было меньше 6 олимпиад.
"В 11 классе количество олимпиад, в которых она приняла участие, возросло в 3 раза по сравнению с 7 классом", значит, число олимпиад в 11 классе делится на 3. Можно предположить, что это 9 или 12, тогда в 7 классе было 3 или 4 олимпиады. Проверяем:
классы: 7 8 9 10 11
количество олимпиад: 4 5 6 7 12 = 34 - это минимум при данном предположении - не подходит. Тогда остается в 7 классе - 3 и в 11 - 9 олимпиад. Получаем:
классы: 7 8 9 10 11
количество олимпиад: 3 4 5 6 9 = 27 Надо добавить еще 4. Эти 4 единицы можно добавить в 8, 9 и 10 классы. Тогда получаем:
классы: 7 8 9 10 11
количество олимпиад: 3 5 6 8 9 = 31. А по-другому распределить эти четыре единицы так, что бы "В каждом следующем учебном году она участвовала в бОльшем количестве олимпиад, чем в предыдущем" не получится. Таким образом, ответ: В 10 классе Настя приняла участие в 8 олимпиадах.
Объяснение:
здесь надо рассмотреть два случая
1) х-5>0, x>5, тогда |x-5|=x-5 и 1/(х-5) -2<0, (1-2x+10)/(x-5) <0,
(11-2x)/(x-5) <0 , - __(5)+___(5,5)___-___
общее решение x>5,5 (с учетом, что x-5>0)
2) x-5<0, x<5, тогда |x-5|=5-x и получим уравнение:
1/(5-x) -2<0, (1-10+2x)/ (5-x) <0, (2x-9)/ (5-x) <0
-___(4,5)+(5)___- и общее решение
x<4,5 (с учетом, что x-5<0) , объединяем два случая и
ответ: (-Б; 4,5) и (5,5; +Б) (Б- бесконечность)