Решение
Через вершину B проведем прямую, параллельную AC, продлим медиану AА₁ до пересечения с этой прямой в точке T.
Из равенства треугольников А₁BT и A А₁C (по стороне и двум прилежащим углам: B А₁ = А₁C, т. к. A А₁ — медиана,
∠B А₁T = ∠A А₁C — вертикальные, ∠ А₁BT = ∠ А₁CA — накрест лежащие при параллельных прямых AC, BT и секущей BC) следует, что BT = AC и A А₁ = KT. Из подобия треугольников
AML и MBT (по двум углам: ∠MAL = ∠BTА₁,
∠ALB = ∠LBT — накрест лежащие при параллельных
прямых AC, BT и секущих BL, AT) следует,
что AL : BT = AL : AC = AM : MT. Так как АА₁ = А₁T,
то AM : MT = 1 : 7.
Тогда AL : AC = 1 : 7, а AL : LC = 1 : 6.
решение во вкладыше
Рациональные дроби и их свойства
Целые выражения - это выражения, составленные из чисел и переменных с использованием действий сложения, вычитания, умножения и деления на число, отличное от нуля.
Дробные выражения допускают также деление на выражение с переменными.
Целые и дробные выражения называют рациональными выражениями.
Допустимые значения переменных - это те значения переменных, при которых выражение имеет смысл.
Рациональная дробь - это дробь, числителем и знаменателем которой являются многочлены.
Основное свойство дроби: если числитель и знаменатель некоторой рациональной дроби умножить на один и тот же многочлен, не равный тождественно нулю, то получится дробь, равная исходной.
Тождество - это равенство, которое верно при всех допустимых значениях переменных, входящих в это равенство.