М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
vadimminaev228
vadimminaev228
24.05.2023 10:02 •  Алгебра

Даны точки: a(1; 3),b(-3; 5),c(-4; -22).какие из них принадлежат функции y=5x-2​

👇
Ответ:
чтлза
чтлза
24.05.2023

Подставляем координаты каждой точки в нашу функцию

y=5x-2

A(1;3)

3=5*1-2

3=5-2

3=3

Точка А принадлежит графику.

B(-3;5)

5=5*(-3)-2

5=-15-2

Точка В не принадлежит графику

C(-4;-22)

-22=5*(-4)-2

-22=-20-2

-22=-22

Точка С принадлежит графику

4,4(3 оценок)
Открыть все ответы
Ответ:
mkatty2910
mkatty2910
24.05.2023

Иррациона́льное число́ — это вещественное число, которое не является рациональным, то есть не может быть представлено в виде обыкновенной дроби {\displaystyle \pm {\frac {m}{n}}}{\displaystyle \pm {\frac {m}{n}}}, где {\displaystyle m,n}m,n — натуральные числа. Иррациональное число может быть представлено в виде бесконечной непериодической десятичной дроби.

Иррациональные числа

ζ(3) — ρ — √2 — √3 — √5 — ln 2 — φ,Φ — ψ — α,δ — e — {\displaystyle e^{\pi }}e^{\pi } и π

Другими словами, множество иррациональных чисел есть разность {\displaystyle \mathbb {I} =\mathbb {R} \backslash \mathbb {Q} }{\displaystyle \mathbb {I} =\mathbb {R} \backslash \mathbb {Q} } множеств вещественных и рациональных чисел.

О существовании иррациональных чисел (точнее отрезков, несоизмеримых с отрезком единичной длины), знали уже древние математики: им была известна, например, несоизмеримость диагонали и стороны квадрата, что равносильно иррациональности числа {\displaystyle {\sqrt {2}}}{\sqrt {2}}[1].

К числу иррациональных чисел относятся отношение π окружности круга к его диаметру, число Эйлера e, золотое сечение φ и квадратный корень из двух[2][3][4]; на самом деле все квадратные корни натуральных чисел, кроме полных квадратов, иррациональны.

Иррациональные числа также могут рассматриваться через бесконечные непрерывные дроби. Следствием доказательства Кантора является то, что действительные числа неисчислимы, а рациональные счетны, отсюда следует, что почти все действительные числа иррациональны[5].

4,4(38 оценок)
Ответ:
z0mD
z0mD
24.05.2023

а) Преобразуйте выражение, чтобы получить многочлен стандартного вида. Укажите степень многочлена.

(2х² - 2)² - 4х³(х³ + х² - х - 2) + 4(х²)³ + 20х⁹/5х⁴ - 2(4х³ + 1) =

= 4х⁴ - 8х² + 4 - 4х⁶ - 4х⁵ + 4х⁴ + 8х³ + 4х⁶ + 4х⁵ - 8х³ - 2 =

= 8х⁴ - 8х² + 2. Стандартный вид. Степень (х⁴) = 4.

б) Докажите, что при любых целых значениях x многочлен делится на 2.

Вынести общий множитель 2 за скобки;

8х⁴ - 8х² + 2 = 2(4х⁴ - 4х² + 1). Полученное выражение при любых целых значениях х делится на 2.в) Докажите, что при любых действительных значениях x многочлен не может принимать отрицательных значений.

После вынесения общего множителя 2 в скобках будет квадрат суммы, который больше 0 при любом значении

2(4х⁴ - 4х² + 1) = 2(2х² + 1)².

4,4(66 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ