а) 1
б) 1
Объяснение:
Касательной к графику функции у (х) является первая производная у', значение которой в точке x₀ равно тангенсу угла между касательной к графику функции у (х) и осью х.
а)
1) Находим производную:
y' = (х⁶ - 4х)' = (х⁶)' - (4х)' = 5x⁵ -4
2) Находим значение производной y' = 5x⁵- 4 в точке x₀ = 1:
y'(1) = 5x⁵ -4 = 5 · 1⁵ - 4 = 5 - 4 = 1
ответ: 1
б)
1) Находим производную:
y' = (√х - 3)' = (√х)' - (3)' = 1/(2√x) - 0 = 1/(2√x)
2) Находим значение производной y' = 1/(2√x) в точке x₀ = 1/4:
y' (1/4) = 1/(2√x) = 1/ (2 · 1/2) = 1/1 = 1
ответ: 1
Пронумеруем книги от 1 до 666.
Рассмотрим последовательности книг 1 + 14i, 2 + 14i, 3 + 14i, ... 14 + 14i, всего 14 последовательностей.
Если длина последовательности k = 2m, то книг по белой магии в ней может быть не более m, а если k = 2m + 1, то не более m + 1 (все книги по белой магии будут стоять на нечетных местах)
Определим сколько у нас будет последовательностей и какой длины.
Т.к. 666 = 14 * 47 + 8, то у нас 6 последовательностей длины 47 и 8 последовательностей длины 48. Всего книг по белой магии может быть:
K = 8 * 24 + 6 * 24 = 14 * 24 = 336