М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
alenayugova26Alena
alenayugova26Alena
28.04.2021 09:22 •  Алгебра

с алгеброй! Решите этот пример, прикрепленный на фотографии сложения. ​


с алгеброй! Решите этот пример, прикрепленный на фотографии сложения. ​

👇
Открыть все ответы
Ответ:
lokotkovasveta
lokotkovasveta
28.04.2021
\frac{sin2a+tg2a}{cos2a+ctg2a} = \frac{sin2a+ \frac{sin2a}{cos2a} }{cos2a+ \frac{cos2a}{sin2a} }=\\\\ \frac{ \frac{sin2a*cos2a+sin2a}{cos2a} }{\frac{sin2a*cos2a+cos2a}{sin2a}} = \frac{sin2a(cos2a+1)sin2a}{cos2a(1+sin2a)cos2a} = \\\\tg^22a* \frac{1+cos^2a-sin^2a}{sin^2a+2sina*cosa+cos^2a}=tg^22a* \frac{2cos^2a}{(sina+cosa)^2}

В последнее выражение все элементы входят как квадраты.
Квадрат любого числа не отрицателен.
В выражении нет операции вычитания, поэтому все выражение сохраняет положительное значение.

Может ли выражение стать равным 0? Нет, не может из-за области определения.
Из последнего выражения видим, что для того, чтобы все выражение стало равным 0, требуется, чтобы либо tg2a стал равен 0, либо cos2a стал равен 0.
Но в исходном задании указана функция ctg2a, обратная tg2a. Поэтому все значения a, при котором tg2a или ctg2a обращаются в 0, исключаются.
Это автоматически исключает точки, в которых обращаются в 0 функции cos2a и sin2a.

Исходя из этого, значение выражения больше 0 при любом значении a из области определения.
4,6(32 оценок)
Ответ:
ОМОН07
ОМОН07
28.04.2021
1) \left \{ {{x+y=4} \atop {x-y=2}} \right.
Просто сложим два уравнения.
Получается:
x+y+x-y=4+2
2x=6
x=3.
Подставляем во второе уравнение.
3-y=2 очевидно, что y=1. Упор.пара: (3,1)
2)
\left \{ {{x+y=3} \atop {3y-x=1}} \right.
То же самое.
x+y+3y-x=3+1
4y=4
y=1
Подставляем в первое уравнение.
x+1=3 => x=2. (2,1) - упор.пара (если все строго).
3) 
\left \{ {{|x|+y=5} \atop {x+4y=5}} \right.
Тут на самом деле несколько вариантов элементарного решения. Я использую самый простой (но не самый короткий).
Модуль дает нам этакую мини-системку для первого уравнения, в одном ур. x, в другом -x. 
Типа:
\left \{ {{ \left \{ {{x=5-y} \atop {x=y-5}} \right.} \atop {x+4y=5}} \right.
Только маленькая скобка не фигурная, а квадратная.
Решается так - сначала подставляешь в систему первое уравнение, затем второе (по очереди).
3.1) Здесь:
\left \{ {{x=5-y} \atop {x+4y=5}} \right.
Решаем подстановкой.
5-y+4y=5
3y=0
y=0 => x=5. (5,0) ответ.
3.2) Здесь:
\left \{ {{x=y-5} \atop {x+4y=5}} \right.
То же самое.
y-5+4y=5
5y=10
y=2.

x+8=5 => x=-3
(-3,2) - ответ.
4,4(52 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ