б) если рассмотреть равенство: x² + (y+1)² = 4
то график этого уравнения --это окружность с центром в (0; -1) радиуса 2.
уравнение окружности с центром (x₀; y₀) радиуса R: (х-х₀)² + (y-y₀)² = R²
в задании знак неравенства "больше", т.е. это часть плоскости ВНЕ круга, включая границу (окружность)
например: точка (2;-3)
2² + (-3+1)² ≥ 4 верно...
а) неравенство с модулем со знаком "меньше" равносильно двойному неравенству: -2 < y-x-1 < 2 (прибавим 1)
-1 < y-x < 3
двойное неравенство равносильно системе неравенств (пересечению промежутков):
{y-x<3
{y-x>-1
или
{ y < x+3 (часть плоскости НИЖЕ (знак "<") прямой у=х+3)
{ y > x-1 (часть плоскости ВЫШЕ (знак ">") прямой у=x-1)
это полоса между параллельными прямыми...
и всегда можно проверить...
например, точка (2;-1) не принадлежит этому множеству...
|-1-2-1| < 2 неверно
точка (0;0) принадлежит этому множеству...
|0-0-1| < 2 верно
x=−7x+40x−10
Домножим обе части ур-ния на знаменатели:
-10 + x
получим:
x(x−10)=1x−10(−7x+40)(x−10)
x(x−10)=−7x+40
Перенесём правую часть уравнения в
левую часть уравнения со знаком минус.
Уравнение превратится из
x(x−10)=−7x+40
в
x(x−10)+7x−40=0Раскроем выражение в уравнении
x(x−10)+7x−40=0Получаем квадратное уравнение
x2−3x−40=0
Это уравнение вида
a*x^2 + b*x + c.
Квадратное уравнение можно решить
с дискриминанта.
Корни квадратного уравнения:
x1=D‾‾√−b2a
x2=−D‾‾√−b2a
где D = b^2 - 4*a*c - это дискриминант.
Т.к.
a=1
b=−3
c=−40
, то
D = b^2 - 4 * a * c =
(-3)^2 - 4 * (1) * (-40) = 169
Т.к. D > 0, то уравнение имеет два корня.
x1 = (-b + sqrt(D)) / (2*a)
x2 = (-b - sqrt(D)) / (2*a)
или
x1=8
x2=−5
ответ: x=-5